Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of heating must before fermentation on Chardonnay wines

Impact of heating must before fermentation on Chardonnay wines

Abstract

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must. This technique appeared a few years ago to treat spoiled grape harvest or sub-maturity ones. After pressing and SO2 addition, a Chardonnay must was separated in two glass containers: one stored at 6°C during 12 hours and the other one heated at 65°C during 12 hours. A racking of the clear juice was then realized before temperature adjustment to 18°C for starting the alcoholic fermentation. All the other wine making stages, ageing and bottling were similar for both conditions. Without impact on the alcoholic fermentation, must heating gave a more expressive and aromatic wine with citrus fruits notes. The latter appeared early in the wine making process and remained after bottling, suggesting a likely higher concentration of volatile thiols. Two months after the bottling, the wine from the heated must was considered significantly fruitier, more persistent and was more appreciated in quantified descriptive analysis by a wine professionals panel. Must heating also led to chemical changes in the wine. Untargeted analysis by 3D fluorescence showed phenolic and protein component evolution for the heated must modality. Acid phenols and derivatives analysis showed that they were present in lower concentration in the heated must modality, contrary to caftarique or coutaric acids. Oxidation and esterification reactions with tartaric acid could have been favoured. Steric exclusion chromatography allowed to confirm hypotheses for the protein fraction. At the end of alcoholic fermentation, the high molecular weight fraction (> 200 kDa) seemed to decrease in the heated must modality. At the end of malolactic fermentation, fractions between 20 and 30 kDa, potientially associated with heat instable proteins, were also reduced in the heated must modality. A heat test realized after bottling confirmed that the heated must modality was stable, but not the control. This trial confirms the interest for this technique especially for cellars, which already have must heating equipments for red grapes (thermo process). This technique seems to favour the expression of fruity white wines. In a context of reduction of oenological waste production, a further advantage is that bentonite treatment seems to be no longer required.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Bertrand Chatelet*, Christian Coelho, Laurence Noret, Maria Nikolantonaki, Régis Gougeon, Valérie Lempereur

*IFV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.