Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of heating must before fermentation on Chardonnay wines

Impact of heating must before fermentation on Chardonnay wines

Abstract

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must. This technique appeared a few years ago to treat spoiled grape harvest or sub-maturity ones. After pressing and SO2 addition, a Chardonnay must was separated in two glass containers: one stored at 6°C during 12 hours and the other one heated at 65°C during 12 hours. A racking of the clear juice was then realized before temperature adjustment to 18°C for starting the alcoholic fermentation. All the other wine making stages, ageing and bottling were similar for both conditions. Without impact on the alcoholic fermentation, must heating gave a more expressive and aromatic wine with citrus fruits notes. The latter appeared early in the wine making process and remained after bottling, suggesting a likely higher concentration of volatile thiols. Two months after the bottling, the wine from the heated must was considered significantly fruitier, more persistent and was more appreciated in quantified descriptive analysis by a wine professionals panel. Must heating also led to chemical changes in the wine. Untargeted analysis by 3D fluorescence showed phenolic and protein component evolution for the heated must modality. Acid phenols and derivatives analysis showed that they were present in lower concentration in the heated must modality, contrary to caftarique or coutaric acids. Oxidation and esterification reactions with tartaric acid could have been favoured. Steric exclusion chromatography allowed to confirm hypotheses for the protein fraction. At the end of alcoholic fermentation, the high molecular weight fraction (> 200 kDa) seemed to decrease in the heated must modality. At the end of malolactic fermentation, fractions between 20 and 30 kDa, potientially associated with heat instable proteins, were also reduced in the heated must modality. A heat test realized after bottling confirmed that the heated must modality was stable, but not the control. This trial confirms the interest for this technique especially for cellars, which already have must heating equipments for red grapes (thermo process). This technique seems to favour the expression of fruity white wines. In a context of reduction of oenological waste production, a further advantage is that bentonite treatment seems to be no longer required.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Bertrand Chatelet*, Christian Coelho, Laurence Noret, Maria Nikolantonaki, Régis Gougeon, Valérie Lempereur

*IFV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).