Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of heating must before fermentation on Chardonnay wines

Impact of heating must before fermentation on Chardonnay wines

Abstract

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must. This technique appeared a few years ago to treat spoiled grape harvest or sub-maturity ones. After pressing and SO2 addition, a Chardonnay must was separated in two glass containers: one stored at 6°C during 12 hours and the other one heated at 65°C during 12 hours. A racking of the clear juice was then realized before temperature adjustment to 18°C for starting the alcoholic fermentation. All the other wine making stages, ageing and bottling were similar for both conditions. Without impact on the alcoholic fermentation, must heating gave a more expressive and aromatic wine with citrus fruits notes. The latter appeared early in the wine making process and remained after bottling, suggesting a likely higher concentration of volatile thiols. Two months after the bottling, the wine from the heated must was considered significantly fruitier, more persistent and was more appreciated in quantified descriptive analysis by a wine professionals panel. Must heating also led to chemical changes in the wine. Untargeted analysis by 3D fluorescence showed phenolic and protein component evolution for the heated must modality. Acid phenols and derivatives analysis showed that they were present in lower concentration in the heated must modality, contrary to caftarique or coutaric acids. Oxidation and esterification reactions with tartaric acid could have been favoured. Steric exclusion chromatography allowed to confirm hypotheses for the protein fraction. At the end of alcoholic fermentation, the high molecular weight fraction (> 200 kDa) seemed to decrease in the heated must modality. At the end of malolactic fermentation, fractions between 20 and 30 kDa, potientially associated with heat instable proteins, were also reduced in the heated must modality. A heat test realized after bottling confirmed that the heated must modality was stable, but not the control. This trial confirms the interest for this technique especially for cellars, which already have must heating equipments for red grapes (thermo process). This technique seems to favour the expression of fruity white wines. In a context of reduction of oenological waste production, a further advantage is that bentonite treatment seems to be no longer required.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Bertrand Chatelet*, Christian Coelho, Laurence Noret, Maria Nikolantonaki, Régis Gougeon, Valérie Lempereur

*IFV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.