Macrowine 2021
IVES 9 IVES Conference Series 9 Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Abstract

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol). The initial phytosterol concentration determined the amount of consumed nitrogen and therefore the population reached in stationary phase and the maximal fermentation rate. An early loss of viability was observed when lipid concentrations were very low. For example, for an initial phytosterol concentration of 1 mg/L, the viability continuously decreased during the stationary phase and its final value was only 50%. In some fermentations, 10 mg/L oxygen were added at the end of the growth phase, to combine the effects of phytosterols from the musts and the de novo synthesis of ergosterol and unsaturated fatty acids. Oxygen additions highly improved the fermentation kinetics of media with low phytosterol contents. For example, in the medium containing 2 mg/L of phytosterol, the maximum fermentation rate was increased by 45 % and the fermentation time was 70 hours shorter. In the case of media containing 3, 5 and 8 mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics as well as the final populations and viabilities (higher than 90%) were identical for the 3 conditions. Impacts of lipid content and oxygen addition on acetate and glycerol synthesis were also quantified. Acetate production was lower for high phytosterol concentrations whereas, in extreme phytosterol deficient musts, oxygenation resulted in a significant increase of both acetate and glycerol synthesis. Similar results were obtained with natural musts containing different amounts of solids. Consequently, this study points out the importance of controlling the nitrogen – lipid balance, especially in nitrogen-rich musts like in Champagne, and also the interest of combining a sufficient initial turbidity with an optimized oxygenation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Thomas Ochando*, Jean-Marie Sablayrolles, Jean-Roch Mouret, Vincent Farines

*INRA (UMR SPO)

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.