Macrowine 2021
IVES 9 IVES Conference Series 9 Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Abstract

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol). The initial phytosterol concentration determined the amount of consumed nitrogen and therefore the population reached in stationary phase and the maximal fermentation rate. An early loss of viability was observed when lipid concentrations were very low. For example, for an initial phytosterol concentration of 1 mg/L, the viability continuously decreased during the stationary phase and its final value was only 50%. In some fermentations, 10 mg/L oxygen were added at the end of the growth phase, to combine the effects of phytosterols from the musts and the de novo synthesis of ergosterol and unsaturated fatty acids. Oxygen additions highly improved the fermentation kinetics of media with low phytosterol contents. For example, in the medium containing 2 mg/L of phytosterol, the maximum fermentation rate was increased by 45 % and the fermentation time was 70 hours shorter. In the case of media containing 3, 5 and 8 mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics as well as the final populations and viabilities (higher than 90%) were identical for the 3 conditions. Impacts of lipid content and oxygen addition on acetate and glycerol synthesis were also quantified. Acetate production was lower for high phytosterol concentrations whereas, in extreme phytosterol deficient musts, oxygenation resulted in a significant increase of both acetate and glycerol synthesis. Similar results were obtained with natural musts containing different amounts of solids. Consequently, this study points out the importance of controlling the nitrogen – lipid balance, especially in nitrogen-rich musts like in Champagne, and also the interest of combining a sufficient initial turbidity with an optimized oxygenation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Thomas Ochando*, Jean-Marie Sablayrolles, Jean-Roch Mouret, Vincent Farines

*INRA (UMR SPO)

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.