Macrowine 2021
IVES 9 IVES Conference Series 9 Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Abstract

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol). The initial phytosterol concentration determined the amount of consumed nitrogen and therefore the population reached in stationary phase and the maximal fermentation rate. An early loss of viability was observed when lipid concentrations were very low. For example, for an initial phytosterol concentration of 1 mg/L, the viability continuously decreased during the stationary phase and its final value was only 50%. In some fermentations, 10 mg/L oxygen were added at the end of the growth phase, to combine the effects of phytosterols from the musts and the de novo synthesis of ergosterol and unsaturated fatty acids. Oxygen additions highly improved the fermentation kinetics of media with low phytosterol contents. For example, in the medium containing 2 mg/L of phytosterol, the maximum fermentation rate was increased by 45 % and the fermentation time was 70 hours shorter. In the case of media containing 3, 5 and 8 mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics as well as the final populations and viabilities (higher than 90%) were identical for the 3 conditions. Impacts of lipid content and oxygen addition on acetate and glycerol synthesis were also quantified. Acetate production was lower for high phytosterol concentrations whereas, in extreme phytosterol deficient musts, oxygenation resulted in a significant increase of both acetate and glycerol synthesis. Similar results were obtained with natural musts containing different amounts of solids. Consequently, this study points out the importance of controlling the nitrogen – lipid balance, especially in nitrogen-rich musts like in Champagne, and also the interest of combining a sufficient initial turbidity with an optimized oxygenation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Thomas Ochando*, Jean-Marie Sablayrolles, Jean-Roch Mouret, Vincent Farines

*INRA (UMR SPO)

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.