Macrowine 2021
IVES 9 IVES Conference Series 9 Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Abstract

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol). The initial phytosterol concentration determined the amount of consumed nitrogen and therefore the population reached in stationary phase and the maximal fermentation rate. An early loss of viability was observed when lipid concentrations were very low. For example, for an initial phytosterol concentration of 1 mg/L, the viability continuously decreased during the stationary phase and its final value was only 50%. In some fermentations, 10 mg/L oxygen were added at the end of the growth phase, to combine the effects of phytosterols from the musts and the de novo synthesis of ergosterol and unsaturated fatty acids. Oxygen additions highly improved the fermentation kinetics of media with low phytosterol contents. For example, in the medium containing 2 mg/L of phytosterol, the maximum fermentation rate was increased by 45 % and the fermentation time was 70 hours shorter. In the case of media containing 3, 5 and 8 mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics as well as the final populations and viabilities (higher than 90%) were identical for the 3 conditions. Impacts of lipid content and oxygen addition on acetate and glycerol synthesis were also quantified. Acetate production was lower for high phytosterol concentrations whereas, in extreme phytosterol deficient musts, oxygenation resulted in a significant increase of both acetate and glycerol synthesis. Similar results were obtained with natural musts containing different amounts of solids. Consequently, this study points out the importance of controlling the nitrogen – lipid balance, especially in nitrogen-rich musts like in Champagne, and also the interest of combining a sufficient initial turbidity with an optimized oxygenation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Thomas Ochando*, Jean-Marie Sablayrolles, Jean-Roch Mouret, Vincent Farines

*INRA (UMR SPO)

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.