Macrowine 2021
IVES 9 IVES Conference Series 9 Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Abstract

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage. Since a moratorium on the use of sulphur dioxide, the most widely used biocide for barrel sanitation, has been issued by the European Commission, there is a drastic need to evaluate alternative sanitation methods. Literature on the effectiveness of barrel sanitation treatments is scattered and presents inconclusive results. Furthermore, all studies have used culture-dependent methods to detect Brettanomyces which has been reported to attain a viable but non-culturable state [1,2]. Therefore, the aim of this study was to evaluate several physical and chemical sanitation treatments in their efficiency to eliminate B. bruxellensis from oak wood. French oak wood was contaminated with different B. bruxellensis strains and subsequently subjected to several chemical and physical sanitation treatments. The methods included, among others, ozone gas, ozonated water, high pressure ultrasound, steam, peracetic acid, sodium percarbonate and microwave. After their extraction from the oak wood, Brettanomyces cells were subjected to a fluorescence-based live/dead staining and detected by means of flow cytometry. The treatments differed greatly in their ability to reduce B. bruxellensis cells with ozone gas showing promising results. Sodium percarbonate and steam treatments were also effective in reducing cells. This study presents the first evaluation of alternative barrel sanitation treatments by flow cytometry, a culture-independent method, and is also the first study to compare an array of barrel sanitation treatments under controlled conditions.

1. Agnolucci, M., Rea, F., Sbrana, C., Cristani, C., Fracassetti, D., Tirelli, A., Nuti, M., 2010. Sulphur dioxide affects culturability and volatile phenol production by Brettanomyces/ Dekkera bruxellensis. International Journal of Food Microbiology 143, 76-80. 2. Serpaggi, V., Remize, F., Recorbet, G., Gaudot-Dumas, E., Sequeira-Le Grand, A., Alexandre, H., 2012. Characterization of the “viable but nonculturable”(VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiology 30, 438-447.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Engela Kritzinger*, Maren Scharfenberger-Schm, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.