Macrowine 2021
IVES 9 IVES Conference Series 9 Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Abstract

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage. Since a moratorium on the use of sulphur dioxide, the most widely used biocide for barrel sanitation, has been issued by the European Commission, there is a drastic need to evaluate alternative sanitation methods. Literature on the effectiveness of barrel sanitation treatments is scattered and presents inconclusive results. Furthermore, all studies have used culture-dependent methods to detect Brettanomyces which has been reported to attain a viable but non-culturable state [1,2]. Therefore, the aim of this study was to evaluate several physical and chemical sanitation treatments in their efficiency to eliminate B. bruxellensis from oak wood. French oak wood was contaminated with different B. bruxellensis strains and subsequently subjected to several chemical and physical sanitation treatments. The methods included, among others, ozone gas, ozonated water, high pressure ultrasound, steam, peracetic acid, sodium percarbonate and microwave. After their extraction from the oak wood, Brettanomyces cells were subjected to a fluorescence-based live/dead staining and detected by means of flow cytometry. The treatments differed greatly in their ability to reduce B. bruxellensis cells with ozone gas showing promising results. Sodium percarbonate and steam treatments were also effective in reducing cells. This study presents the first evaluation of alternative barrel sanitation treatments by flow cytometry, a culture-independent method, and is also the first study to compare an array of barrel sanitation treatments under controlled conditions.

1. Agnolucci, M., Rea, F., Sbrana, C., Cristani, C., Fracassetti, D., Tirelli, A., Nuti, M., 2010. Sulphur dioxide affects culturability and volatile phenol production by Brettanomyces/ Dekkera bruxellensis. International Journal of Food Microbiology 143, 76-80. 2. Serpaggi, V., Remize, F., Recorbet, G., Gaudot-Dumas, E., Sequeira-Le Grand, A., Alexandre, H., 2012. Characterization of the “viable but nonculturable”(VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiology 30, 438-447.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Engela Kritzinger*, Maren Scharfenberger-Schm, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.