Macrowine 2021
IVES 9 IVES Conference Series 9 Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Abstract

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage. Since a moratorium on the use of sulphur dioxide, the most widely used biocide for barrel sanitation, has been issued by the European Commission, there is a drastic need to evaluate alternative sanitation methods. Literature on the effectiveness of barrel sanitation treatments is scattered and presents inconclusive results. Furthermore, all studies have used culture-dependent methods to detect Brettanomyces which has been reported to attain a viable but non-culturable state [1,2]. Therefore, the aim of this study was to evaluate several physical and chemical sanitation treatments in their efficiency to eliminate B. bruxellensis from oak wood. French oak wood was contaminated with different B. bruxellensis strains and subsequently subjected to several chemical and physical sanitation treatments. The methods included, among others, ozone gas, ozonated water, high pressure ultrasound, steam, peracetic acid, sodium percarbonate and microwave. After their extraction from the oak wood, Brettanomyces cells were subjected to a fluorescence-based live/dead staining and detected by means of flow cytometry. The treatments differed greatly in their ability to reduce B. bruxellensis cells with ozone gas showing promising results. Sodium percarbonate and steam treatments were also effective in reducing cells. This study presents the first evaluation of alternative barrel sanitation treatments by flow cytometry, a culture-independent method, and is also the first study to compare an array of barrel sanitation treatments under controlled conditions.

1. Agnolucci, M., Rea, F., Sbrana, C., Cristani, C., Fracassetti, D., Tirelli, A., Nuti, M., 2010. Sulphur dioxide affects culturability and volatile phenol production by Brettanomyces/ Dekkera bruxellensis. International Journal of Food Microbiology 143, 76-80. 2. Serpaggi, V., Remize, F., Recorbet, G., Gaudot-Dumas, E., Sequeira-Le Grand, A., Alexandre, H., 2012. Characterization of the “viable but nonculturable”(VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiology 30, 438-447.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Engela Kritzinger*, Maren Scharfenberger-Schm, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.