Macrowine 2021
IVES 9 IVES Conference Series 9 Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Abstract

The effects of anthropogenic activities on vineyard (different plant protections) and in winery (pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted. The addition of SO2 changes the population dynamics and favors the dominance of the species S. cerevisiae. Moreover, use of SO2 had a particular impact on chemical wine composition with a slight increase in sulfurous compounds for the wines elaborated with sulfites, with an increase of the CHOS/CHO ratio of the mass numbers. However, the non-targeted chemical analysis shows also that these wines can still yet be distinguished at the end of the alcoholic fermentation (with or without SO2) depending on plant protection. Differences linked to plant protection mode are not totally masked by the use of SO2. Moreover, these differences are more visible after AF and can partly result from microbiological processes. Projecting the masses as filtered from the PLS–DA analysis on van Krevelen diagrams reveals specific chemical fingerprints for the organic, conventional and ecophyto wines. It is noteworthy that almost no CHOP- and CHONP-containing compounds are specific for a protection mode and that some CHONP-containing compounds are specific only for organic wines particularly. The organic wines appear to be characterized by CHONS-, CHONSP- and CHO-containing compounds located in particular in areas of amino acids and carbohydrates. The conventional wines appear to be specifically richer in sulfurous CHO-containing compounds with some located in the carbohydrate area and by CHONS- and CHOS-containing compounds. The ecophyto wines appear to be characterized by CHONS-, CHON- and CHO-containing compounds. These results show a significant influence of enological practices such as the use of sulfur dioxide on wine global chemical composition. However the effect of plant protection in the vineyard remains visible. For the first time, the existence of differences in the chemical signatures of wines associated with vineyard protection mode is highlighted.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sandrine Rousseaux*, Cedric Grangeteau, Chloe Roullier-Gall, Hervé Alexandre, Michèle Guilloux-Benatier, Philippe Schmitt-Kopplin, Régis Gougeon

*University of Burgundy IUVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.