Macrowine 2021
IVES 9 IVES Conference Series 9 Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Abstract

The effects of anthropogenic activities on vineyard (different plant protections) and in winery (pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted. The addition of SO2 changes the population dynamics and favors the dominance of the species S. cerevisiae. Moreover, use of SO2 had a particular impact on chemical wine composition with a slight increase in sulfurous compounds for the wines elaborated with sulfites, with an increase of the CHOS/CHO ratio of the mass numbers. However, the non-targeted chemical analysis shows also that these wines can still yet be distinguished at the end of the alcoholic fermentation (with or without SO2) depending on plant protection. Differences linked to plant protection mode are not totally masked by the use of SO2. Moreover, these differences are more visible after AF and can partly result from microbiological processes. Projecting the masses as filtered from the PLS–DA analysis on van Krevelen diagrams reveals specific chemical fingerprints for the organic, conventional and ecophyto wines. It is noteworthy that almost no CHOP- and CHONP-containing compounds are specific for a protection mode and that some CHONP-containing compounds are specific only for organic wines particularly. The organic wines appear to be characterized by CHONS-, CHONSP- and CHO-containing compounds located in particular in areas of amino acids and carbohydrates. The conventional wines appear to be specifically richer in sulfurous CHO-containing compounds with some located in the carbohydrate area and by CHONS- and CHOS-containing compounds. The ecophyto wines appear to be characterized by CHONS-, CHON- and CHO-containing compounds. These results show a significant influence of enological practices such as the use of sulfur dioxide on wine global chemical composition. However the effect of plant protection in the vineyard remains visible. For the first time, the existence of differences in the chemical signatures of wines associated with vineyard protection mode is highlighted.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sandrine Rousseaux*, Cedric Grangeteau, Chloe Roullier-Gall, Hervé Alexandre, Michèle Guilloux-Benatier, Philippe Schmitt-Kopplin, Régis Gougeon

*University of Burgundy IUVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.