Macrowine 2021
IVES 9 IVES Conference Series 9 Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Abstract

The effects of anthropogenic activities on vineyard (different plant protections) and in winery (pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted. The addition of SO2 changes the population dynamics and favors the dominance of the species S. cerevisiae. Moreover, use of SO2 had a particular impact on chemical wine composition with a slight increase in sulfurous compounds for the wines elaborated with sulfites, with an increase of the CHOS/CHO ratio of the mass numbers. However, the non-targeted chemical analysis shows also that these wines can still yet be distinguished at the end of the alcoholic fermentation (with or without SO2) depending on plant protection. Differences linked to plant protection mode are not totally masked by the use of SO2. Moreover, these differences are more visible after AF and can partly result from microbiological processes. Projecting the masses as filtered from the PLS–DA analysis on van Krevelen diagrams reveals specific chemical fingerprints for the organic, conventional and ecophyto wines. It is noteworthy that almost no CHOP- and CHONP-containing compounds are specific for a protection mode and that some CHONP-containing compounds are specific only for organic wines particularly. The organic wines appear to be characterized by CHONS-, CHONSP- and CHO-containing compounds located in particular in areas of amino acids and carbohydrates. The conventional wines appear to be specifically richer in sulfurous CHO-containing compounds with some located in the carbohydrate area and by CHONS- and CHOS-containing compounds. The ecophyto wines appear to be characterized by CHONS-, CHON- and CHO-containing compounds. These results show a significant influence of enological practices such as the use of sulfur dioxide on wine global chemical composition. However the effect of plant protection in the vineyard remains visible. For the first time, the existence of differences in the chemical signatures of wines associated with vineyard protection mode is highlighted.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sandrine Rousseaux*, Cedric Grangeteau, Chloe Roullier-Gall, Hervé Alexandre, Michèle Guilloux-Benatier, Philippe Schmitt-Kopplin, Régis Gougeon

*University of Burgundy IUVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages

An alternative to improve grape quality is the application to the vineyard of elicitors. Although these compounds were first used to increase resistance of plants against pathogens, it has been found that they are also able to induce mechanisms involved in the synthesis of phenolic compounds and some amino acids. However, researches about the influence of elicitors on grape volatile composition are scarcely. Therefore, the aim of this work was to study the influence of methyl jasmonate (MeJ) foliar application on grape aroma composition over three consecutive vintages. MeJ was applied to Tempranillo grapevines at a concentration of 10 mM in 2013, 2014, and 2015 years. Control plants were sprayed with water.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.