Macrowine 2021
IVES 9 IVES Conference Series 9 Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

Abstract

The effects of anthropogenic activities on vineyard (different plant protections) and in winery (pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted. The addition of SO2 changes the population dynamics and favors the dominance of the species S. cerevisiae. Moreover, use of SO2 had a particular impact on chemical wine composition with a slight increase in sulfurous compounds for the wines elaborated with sulfites, with an increase of the CHOS/CHO ratio of the mass numbers. However, the non-targeted chemical analysis shows also that these wines can still yet be distinguished at the end of the alcoholic fermentation (with or without SO2) depending on plant protection. Differences linked to plant protection mode are not totally masked by the use of SO2. Moreover, these differences are more visible after AF and can partly result from microbiological processes. Projecting the masses as filtered from the PLS–DA analysis on van Krevelen diagrams reveals specific chemical fingerprints for the organic, conventional and ecophyto wines. It is noteworthy that almost no CHOP- and CHONP-containing compounds are specific for a protection mode and that some CHONP-containing compounds are specific only for organic wines particularly. The organic wines appear to be characterized by CHONS-, CHONSP- and CHO-containing compounds located in particular in areas of amino acids and carbohydrates. The conventional wines appear to be specifically richer in sulfurous CHO-containing compounds with some located in the carbohydrate area and by CHONS- and CHOS-containing compounds. The ecophyto wines appear to be characterized by CHONS-, CHON- and CHO-containing compounds. These results show a significant influence of enological practices such as the use of sulfur dioxide on wine global chemical composition. However the effect of plant protection in the vineyard remains visible. For the first time, the existence of differences in the chemical signatures of wines associated with vineyard protection mode is highlighted.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Sandrine Rousseaux*, Cedric Grangeteau, Chloe Roullier-Gall, Hervé Alexandre, Michèle Guilloux-Benatier, Philippe Schmitt-Kopplin, Régis Gougeon

*University of Burgundy IUVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.