Macrowine 2021
IVES 9 IVES Conference Series 9 Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Abstract

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7). Based on previous research, it was observed that these compounds can be already present in freshly bottled wines, free from any sign of oxidation; forming stable, non-volatile and odorless complexes with sulfur dioxide (8). During storage in the bottle these compounds are released as the level of free SO2 decreases by oxidation causing a shift in the SO2-aldehyde adduct chemical equilibria. Moreover, wine aldehydes can be formed throught direct oxidation of their precursors (“de novo” formation), when the free SO2 level is under 5 mg/l (7-8). The main goal of this work is to study the intrinsic ability of the wines for the formation of “aldehydes de novo”. Hence, a method to consume oxygen at controlled doses, at 45 ° C, has been developed. This oxidation method allows to reach de novo formation of aldehydes on a fast way (2-7 days) depending on the wine. The validation of this method is carried out maintaining the same oxidation conditions at 25º C. In addition, the same wines have been submitted to consecutive air saturation cycles (9) for means of comparation. The proposed strategy comprises the study of eight red wines in duplicate, each wine underwent three increasing oxygen doses. The analysis carried out at the beginning at the and end of the oxidation were: aminoacids, metals, free and total SO2, total carbonyl compounds, acetaldehyde, color, IPT, Folin, as well as major and trace aroma compounds. The results show that this is a reproducible method of oxidation, which allows to reach de novo formation of aldehydes at all doses studied. Different profiles of oxygen consumption are obtained depending on the age and previous contact with oxygen, temperature had a strong effect on the formation of Strecker aldehydes with respect to the oxygen consumed.

1. Wildenradt et al., AJEV,1974, 25, 119 2. Escudero et al., JAFC, 2000, 48, 4268 3. Ferreira, A.C.S et al., JAFC, 2003, 51, 1377 4. Cutzach et al., JISVV, 1998, 32, 211 5. Culleré et al., JAFC, 2007, 55, 876 6. San Juan et al., JAFC, 2012, 60, 5045 7. Ferreira et al., JAFC, 2014,62, 10015 8. Bueno et al., JAFC., DOI 10.102117acs.jafc5b04634 9. Ferreira et al. ., JAFC., 2015, 63, 10928

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Almudena Marrufo-Curtido*, Ana Escudero, Ignacio Ontañon, Mónica Bueno, Vanesa Carrascon, Vicente Ferreira

*

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.