Macrowine 2021
IVES 9 IVES Conference Series 9 Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Abstract

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7). Based on previous research, it was observed that these compounds can be already present in freshly bottled wines, free from any sign of oxidation; forming stable, non-volatile and odorless complexes with sulfur dioxide (8). During storage in the bottle these compounds are released as the level of free SO2 decreases by oxidation causing a shift in the SO2-aldehyde adduct chemical equilibria. Moreover, wine aldehydes can be formed throught direct oxidation of their precursors (“de novo” formation), when the free SO2 level is under 5 mg/l (7-8). The main goal of this work is to study the intrinsic ability of the wines for the formation of “aldehydes de novo”. Hence, a method to consume oxygen at controlled doses, at 45 ° C, has been developed. This oxidation method allows to reach de novo formation of aldehydes on a fast way (2-7 days) depending on the wine. The validation of this method is carried out maintaining the same oxidation conditions at 25º C. In addition, the same wines have been submitted to consecutive air saturation cycles (9) for means of comparation. The proposed strategy comprises the study of eight red wines in duplicate, each wine underwent three increasing oxygen doses. The analysis carried out at the beginning at the and end of the oxidation were: aminoacids, metals, free and total SO2, total carbonyl compounds, acetaldehyde, color, IPT, Folin, as well as major and trace aroma compounds. The results show that this is a reproducible method of oxidation, which allows to reach de novo formation of aldehydes at all doses studied. Different profiles of oxygen consumption are obtained depending on the age and previous contact with oxygen, temperature had a strong effect on the formation of Strecker aldehydes with respect to the oxygen consumed.

1. Wildenradt et al., AJEV,1974, 25, 119 2. Escudero et al., JAFC, 2000, 48, 4268 3. Ferreira, A.C.S et al., JAFC, 2003, 51, 1377 4. Cutzach et al., JISVV, 1998, 32, 211 5. Culleré et al., JAFC, 2007, 55, 876 6. San Juan et al., JAFC, 2012, 60, 5045 7. Ferreira et al., JAFC, 2014,62, 10015 8. Bueno et al., JAFC., DOI 10.102117acs.jafc5b04634 9. Ferreira et al. ., JAFC., 2015, 63, 10928

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Almudena Marrufo-Curtido*, Ana Escudero, Ignacio Ontañon, Mónica Bueno, Vanesa Carrascon, Vicente Ferreira

*

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.