Macrowine 2021
IVES 9 IVES Conference Series 9 Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Abstract

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7). Based on previous research, it was observed that these compounds can be already present in freshly bottled wines, free from any sign of oxidation; forming stable, non-volatile and odorless complexes with sulfur dioxide (8). During storage in the bottle these compounds are released as the level of free SO2 decreases by oxidation causing a shift in the SO2-aldehyde adduct chemical equilibria. Moreover, wine aldehydes can be formed throught direct oxidation of their precursors (“de novo” formation), when the free SO2 level is under 5 mg/l (7-8). The main goal of this work is to study the intrinsic ability of the wines for the formation of “aldehydes de novo”. Hence, a method to consume oxygen at controlled doses, at 45 ° C, has been developed. This oxidation method allows to reach de novo formation of aldehydes on a fast way (2-7 days) depending on the wine. The validation of this method is carried out maintaining the same oxidation conditions at 25º C. In addition, the same wines have been submitted to consecutive air saturation cycles (9) for means of comparation. The proposed strategy comprises the study of eight red wines in duplicate, each wine underwent three increasing oxygen doses. The analysis carried out at the beginning at the and end of the oxidation were: aminoacids, metals, free and total SO2, total carbonyl compounds, acetaldehyde, color, IPT, Folin, as well as major and trace aroma compounds. The results show that this is a reproducible method of oxidation, which allows to reach de novo formation of aldehydes at all doses studied. Different profiles of oxygen consumption are obtained depending on the age and previous contact with oxygen, temperature had a strong effect on the formation of Strecker aldehydes with respect to the oxygen consumed.

1. Wildenradt et al., AJEV,1974, 25, 119 2. Escudero et al., JAFC, 2000, 48, 4268 3. Ferreira, A.C.S et al., JAFC, 2003, 51, 1377 4. Cutzach et al., JISVV, 1998, 32, 211 5. Culleré et al., JAFC, 2007, 55, 876 6. San Juan et al., JAFC, 2012, 60, 5045 7. Ferreira et al., JAFC, 2014,62, 10015 8. Bueno et al., JAFC., DOI 10.102117acs.jafc5b04634 9. Ferreira et al. ., JAFC., 2015, 63, 10928

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Almudena Marrufo-Curtido*, Ana Escudero, Ignacio Ontañon, Mónica Bueno, Vanesa Carrascon, Vicente Ferreira

*

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.