Macrowine 2021
IVES 9 IVES Conference Series 9 Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Abstract

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7). Based on previous research, it was observed that these compounds can be already present in freshly bottled wines, free from any sign of oxidation; forming stable, non-volatile and odorless complexes with sulfur dioxide (8). During storage in the bottle these compounds are released as the level of free SO2 decreases by oxidation causing a shift in the SO2-aldehyde adduct chemical equilibria. Moreover, wine aldehydes can be formed throught direct oxidation of their precursors (“de novo” formation), when the free SO2 level is under 5 mg/l (7-8). The main goal of this work is to study the intrinsic ability of the wines for the formation of “aldehydes de novo”. Hence, a method to consume oxygen at controlled doses, at 45 ° C, has been developed. This oxidation method allows to reach de novo formation of aldehydes on a fast way (2-7 days) depending on the wine. The validation of this method is carried out maintaining the same oxidation conditions at 25º C. In addition, the same wines have been submitted to consecutive air saturation cycles (9) for means of comparation. The proposed strategy comprises the study of eight red wines in duplicate, each wine underwent three increasing oxygen doses. The analysis carried out at the beginning at the and end of the oxidation were: aminoacids, metals, free and total SO2, total carbonyl compounds, acetaldehyde, color, IPT, Folin, as well as major and trace aroma compounds. The results show that this is a reproducible method of oxidation, which allows to reach de novo formation of aldehydes at all doses studied. Different profiles of oxygen consumption are obtained depending on the age and previous contact with oxygen, temperature had a strong effect on the formation of Strecker aldehydes with respect to the oxygen consumed.

1. Wildenradt et al., AJEV,1974, 25, 119 2. Escudero et al., JAFC, 2000, 48, 4268 3. Ferreira, A.C.S et al., JAFC, 2003, 51, 1377 4. Cutzach et al., JISVV, 1998, 32, 211 5. Culleré et al., JAFC, 2007, 55, 876 6. San Juan et al., JAFC, 2012, 60, 5045 7. Ferreira et al., JAFC, 2014,62, 10015 8. Bueno et al., JAFC., DOI 10.102117acs.jafc5b04634 9. Ferreira et al. ., JAFC., 2015, 63, 10928

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Almudena Marrufo-Curtido*, Ana Escudero, Ignacio Ontañon, Mónica Bueno, Vanesa Carrascon, Vicente Ferreira

*

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.