Macrowine 2021
IVES 9 IVES Conference Series 9 Study of the volatil profile of minority white varieties

Study of the volatil profile of minority white varieties

Abstract

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés. Tempranillo Blanco comes from a mutation of Tempranillo Tinto and it was picked up for the first time in La Rioja in 1988. Maturana Blanca and Turruntés have been grown since long time ago and were recovered from old vineyards. Tempranillo Blanco and Maturana Blanca are only authorized in D.O.Ca. Rioja, and therefore they can really contribute to wines differentiation, increasing the added value and providing wines with personal and marked characteristics. Turruntés, that is a synonym of Albillo Mayor, is cultivated in other Spanish regions. The variety is one of the main factors responsible for the must and wine aroma. In this study, the pre-fermentative volatile profile of five minority white varieties was determined during the 2014 vintage, in comparison to Viura, considering it as the reference variety. All the cultivars were grown in an experimental vineyard. The volatile compounds of these varieties were analyzed by HS-SPME-GC-MS. The results showed marked differences in the aromatic profile of the studied grape varieties. In all cases, C6 were the most abundant compounds (70 – 93%), followed by norisoprenoids (4 – 13%), carbonyl (0.6 – 4%), benzenoids (0.1 – 4%) and terpenoids (1.2 – 3.3%). Cv. Tempranillo Blanco highlighted by a high content of C6 compounds, greater than cv. Malvasía, Turruntés and Viura. The most representative compounds were hexanal and (E)-2-hexenal. Within norisoprenoids, (E)-β-damascenone and (Z)-β-damascenone were the most abundant compounds in cv. Garnacha Blanca and Malvasía. In these varieties a higher content of terpenoids, such as trans-geranyl-acetone, β-linalool and nerol oxide was observed. Both, norisoprenoids and terpenoids are the most odoriferous groups of compounds, with floral scents that play a key role in the varietal aroma. The content of benzenoids in cv. Malvasía and cv. Turruntés was higher than in the rest of varieties, being 2-phenylethanol the most important molecule. Tempranillo Blanco and Garnacha Blanca presented a significantly higher global aromatic content than Turruntés and Viura. Thus, minority white grape varieties can provide wines with interesting and marked aromatic characteristics.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ana Gonzalo-Diago*, Enrique García-Escudero, Estela Terroba-Pérez, Juana Martínez

*ICVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.