Macrowine 2021
IVES 9 IVES Conference Series 9 Study of the volatil profile of minority white varieties

Study of the volatil profile of minority white varieties

Abstract

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés. Tempranillo Blanco comes from a mutation of Tempranillo Tinto and it was picked up for the first time in La Rioja in 1988. Maturana Blanca and Turruntés have been grown since long time ago and were recovered from old vineyards. Tempranillo Blanco and Maturana Blanca are only authorized in D.O.Ca. Rioja, and therefore they can really contribute to wines differentiation, increasing the added value and providing wines with personal and marked characteristics. Turruntés, that is a synonym of Albillo Mayor, is cultivated in other Spanish regions. The variety is one of the main factors responsible for the must and wine aroma. In this study, the pre-fermentative volatile profile of five minority white varieties was determined during the 2014 vintage, in comparison to Viura, considering it as the reference variety. All the cultivars were grown in an experimental vineyard. The volatile compounds of these varieties were analyzed by HS-SPME-GC-MS. The results showed marked differences in the aromatic profile of the studied grape varieties. In all cases, C6 were the most abundant compounds (70 – 93%), followed by norisoprenoids (4 – 13%), carbonyl (0.6 – 4%), benzenoids (0.1 – 4%) and terpenoids (1.2 – 3.3%). Cv. Tempranillo Blanco highlighted by a high content of C6 compounds, greater than cv. Malvasía, Turruntés and Viura. The most representative compounds were hexanal and (E)-2-hexenal. Within norisoprenoids, (E)-β-damascenone and (Z)-β-damascenone were the most abundant compounds in cv. Garnacha Blanca and Malvasía. In these varieties a higher content of terpenoids, such as trans-geranyl-acetone, β-linalool and nerol oxide was observed. Both, norisoprenoids and terpenoids are the most odoriferous groups of compounds, with floral scents that play a key role in the varietal aroma. The content of benzenoids in cv. Malvasía and cv. Turruntés was higher than in the rest of varieties, being 2-phenylethanol the most important molecule. Tempranillo Blanco and Garnacha Blanca presented a significantly higher global aromatic content than Turruntés and Viura. Thus, minority white grape varieties can provide wines with interesting and marked aromatic characteristics.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ana Gonzalo-Diago*, Enrique García-Escudero, Estela Terroba-Pérez, Juana Martínez

*ICVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.