Macrowine 2021
IVES 9 IVES Conference Series 9 Study of the volatil profile of minority white varieties

Study of the volatil profile of minority white varieties

Abstract

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés. Tempranillo Blanco comes from a mutation of Tempranillo Tinto and it was picked up for the first time in La Rioja in 1988. Maturana Blanca and Turruntés have been grown since long time ago and were recovered from old vineyards. Tempranillo Blanco and Maturana Blanca are only authorized in D.O.Ca. Rioja, and therefore they can really contribute to wines differentiation, increasing the added value and providing wines with personal and marked characteristics. Turruntés, that is a synonym of Albillo Mayor, is cultivated in other Spanish regions. The variety is one of the main factors responsible for the must and wine aroma. In this study, the pre-fermentative volatile profile of five minority white varieties was determined during the 2014 vintage, in comparison to Viura, considering it as the reference variety. All the cultivars were grown in an experimental vineyard. The volatile compounds of these varieties were analyzed by HS-SPME-GC-MS. The results showed marked differences in the aromatic profile of the studied grape varieties. In all cases, C6 were the most abundant compounds (70 – 93%), followed by norisoprenoids (4 – 13%), carbonyl (0.6 – 4%), benzenoids (0.1 – 4%) and terpenoids (1.2 – 3.3%). Cv. Tempranillo Blanco highlighted by a high content of C6 compounds, greater than cv. Malvasía, Turruntés and Viura. The most representative compounds were hexanal and (E)-2-hexenal. Within norisoprenoids, (E)-β-damascenone and (Z)-β-damascenone were the most abundant compounds in cv. Garnacha Blanca and Malvasía. In these varieties a higher content of terpenoids, such as trans-geranyl-acetone, β-linalool and nerol oxide was observed. Both, norisoprenoids and terpenoids are the most odoriferous groups of compounds, with floral scents that play a key role in the varietal aroma. The content of benzenoids in cv. Malvasía and cv. Turruntés was higher than in the rest of varieties, being 2-phenylethanol the most important molecule. Tempranillo Blanco and Garnacha Blanca presented a significantly higher global aromatic content than Turruntés and Viura. Thus, minority white grape varieties can provide wines with interesting and marked aromatic characteristics.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Ana Gonzalo-Diago*, Enrique García-Escudero, Estela Terroba-Pérez, Juana Martínez

*ICVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.