Macrowine 2021
IVES 9 IVES Conference Series 9 Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Abstract

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized. Indeed, previous studies show a great efficiency for low absorbing liquids, but a poor one for high absorbing liquids, due to the lack of UV penetration. For this purpose, coiled tube UV-C reactor has been used in this study. The main component of this reactor is a FEP tube, helically wound around the UV lamp quartz sleeve. Dean vortices (radial flows) generated in this coiled tube reduce the UV dose (in J/L) required, ensuring a homogeneous dose distribution in absorbing liquids. UV-C dose was evaluated by actinometric measurments using iodide/iodate actinometry, allowing us to select the most suitable flow rate. The inactivation performance of this process on multiple strains (S.cerevisiae, D.bruxellensis diploid and triploid, and O.oeni) and the impact of UV-C treatment on sensorial, physicochemical proprieties and chemical compounds like thiols, were investigated on white and rosé wine. The entire continuous process has been evaluated in lab and semi-industrial scale at 2 hL/h. UV-C doses required to achieve a 6 log10 microbial reduction are low (less than 600J/L) in white and rosé wine. Sensorial and physicochemical analyses, after treatment and after three months, didn’t show differences between treated and untreated wines. Chemicals compounds quantification and sensorial analyses on red wine are currently in progress.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rémy Junqua*, Cécile Thibon, Emmanuel Vinsonneau, Marta Avramova, Martine Mietton-Peuchot, Pons Alexandre, Remy Ghidossi

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.