Macrowine 2021
IVES 9 IVES Conference Series 9 Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Abstract

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized. Indeed, previous studies show a great efficiency for low absorbing liquids, but a poor one for high absorbing liquids, due to the lack of UV penetration. For this purpose, coiled tube UV-C reactor has been used in this study. The main component of this reactor is a FEP tube, helically wound around the UV lamp quartz sleeve. Dean vortices (radial flows) generated in this coiled tube reduce the UV dose (in J/L) required, ensuring a homogeneous dose distribution in absorbing liquids. UV-C dose was evaluated by actinometric measurments using iodide/iodate actinometry, allowing us to select the most suitable flow rate. The inactivation performance of this process on multiple strains (S.cerevisiae, D.bruxellensis diploid and triploid, and O.oeni) and the impact of UV-C treatment on sensorial, physicochemical proprieties and chemical compounds like thiols, were investigated on white and rosé wine. The entire continuous process has been evaluated in lab and semi-industrial scale at 2 hL/h. UV-C doses required to achieve a 6 log10 microbial reduction are low (less than 600J/L) in white and rosé wine. Sensorial and physicochemical analyses, after treatment and after three months, didn’t show differences between treated and untreated wines. Chemicals compounds quantification and sensorial analyses on red wine are currently in progress.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rémy Junqua*, Cécile Thibon, Emmanuel Vinsonneau, Marta Avramova, Martine Mietton-Peuchot, Pons Alexandre, Remy Ghidossi

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.