Macrowine 2021
IVES 9 IVES Conference Series 9 Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

Abstract

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized. Indeed, previous studies show a great efficiency for low absorbing liquids, but a poor one for high absorbing liquids, due to the lack of UV penetration. For this purpose, coiled tube UV-C reactor has been used in this study. The main component of this reactor is a FEP tube, helically wound around the UV lamp quartz sleeve. Dean vortices (radial flows) generated in this coiled tube reduce the UV dose (in J/L) required, ensuring a homogeneous dose distribution in absorbing liquids. UV-C dose was evaluated by actinometric measurments using iodide/iodate actinometry, allowing us to select the most suitable flow rate. The inactivation performance of this process on multiple strains (S.cerevisiae, D.bruxellensis diploid and triploid, and O.oeni) and the impact of UV-C treatment on sensorial, physicochemical proprieties and chemical compounds like thiols, were investigated on white and rosé wine. The entire continuous process has been evaluated in lab and semi-industrial scale at 2 hL/h. UV-C doses required to achieve a 6 log10 microbial reduction are low (less than 600J/L) in white and rosé wine. Sensorial and physicochemical analyses, after treatment and after three months, didn’t show differences between treated and untreated wines. Chemicals compounds quantification and sensorial analyses on red wine are currently in progress.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Rémy Junqua*, Cécile Thibon, Emmanuel Vinsonneau, Marta Avramova, Martine Mietton-Peuchot, Pons Alexandre, Remy Ghidossi

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.