Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of toasting oak wood on ellagitannin structures

Influence of toasting oak wood on ellagitannin structures

Abstract

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition. Burning the inner oak wood barrels surface with an open fire inducing severe changes in ellagitannins structures and compositions. Up to now thermal ellagitannin products or the reaction mechanisms underlying the ellagitannin degradation are not well searched, thus the goal of the present study is to research oak wood ellagitannin changes during toasting. For this purpose a purification protocol was established, 100 mg ellagitannins crude extract was fractionated on Toyopearl TSK HW-40 (F) gel from Tosoh Corp, ellagitannins were eluted in the acetone/water fraction. This fraction was fractionated for two times on a C-18 column. The final fraction containing only the eight principal ellagitannins was dry-heated in a lab oven for 60 min at 220 °C. After cooling, it was further fractionated on C-18 column and separated by means of preparative HPLC before being injected in UPLC/TOF-MS. Reduction process is occuring during toasting whereas oxydation can occur without heating; Thus vescalagin, is reduced into deoxyvescalagin whereas castalagin oxidation form is presented before and after toasting. Additionally to deoxyvescalagin, other ellagitannin derivatives which showed [M-H]-ion peak at m/z 1055.0631, 1041.0792, 1011.0756 and 971.0456 were produced by the toasting and identified for the first time. LC-MS/MS analyses gave strong evidence that decarboxylations as well as ellagic acid loss are the key steps in ellagitanin thermal degradation.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Kleopatra Chira*, Michael Jourdes, Pierre Louis Teissedre

*Institut des sciences de la vigne et du vin

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Fractionation of copper and iron in wine: Assessment of potential macromolecule and sulfur binding agents

Copper and iron are known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. However, the binding of metal ions to different wine components under wine conditions, and the impact of this binding on the ability of the metal ions to induce spoilage processes, is not well understood. This study surveyed a range of red and white wines for an understanding of the variability of broad metal categories within the wines. The techniques utilized included an electrochemical constant current stripping potentiometry technique (ccSP), and solid phase extraction (SPE) fractionation of wine with subsequent analysis of the metal content of each fraction by inductively coupled plasma – optical emission spectroscopy (ICP-OES).

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.