Macrowine 2021
IVES 9 IVES Conference Series 9 Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Abstract

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables (~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins. These compounds may undergo hydrolysis or chemical reactions during cooperage processes, especially during heat treatment, which release some aromatic compounds or aromatic precursors having a genuine sensorial interest on wine aged in barrel or in contact with oak products. To date, no studies revealed a link between the proportions of these compounds in oak wood and the chemical and sensorial impact in wines ageing with oak wood. Our study showed that the proportions of these compounds evolved significantly during oak wood seasoning and the results highlighted the impact of selection factors. Respectively, extractables, lignins, hemicelluloses and cellulose proportions were mostly for non matured, 12 months, 18 months and 24 seasoning months. The development of a test plan with a Merlot wine from a second oak wood sampling, using similar modalities as the previous test plan allowed the evaluation of oak wood seasoning impact on the chemical composition of a wine ageing with oak wood pieces. Results showed a lowering of 8% in ellagitannins content of wine between 12 and 24 months modalities. An impact on volatile composition in wine has also been established: furanic aldehydes were positively correlated with a long maturation time (18 and 24 months), whereas phenolic aldehydes were positively correlated with a shorter seasoning time (12 months). Our results highlighted also the impact of selection factors on wine chemical composition. Sensorial analysis on this Merlot wine led to significant differences detected by the panel between 12 and 24 seasoning modalities, but not between 18 and 24 months modalities with triangular tests. Sensorial profiles were also established to attempt to associate the differences detected to one or more descriptors. For this test, results highlighted the difficulty for the panel to make a significant difference between 12 and 24 months modalities. However they contribute to explain the differences demonstrated with triangular tests for some seasoning modalities: toasted, bitterness, astringency, roundness and sweet perception.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alexandra Le Floch*, Michael Jourdes, Nicolas Mourey, Pierre-Louis Teissedre, Thomas Giordanengo

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.