Macrowine 2021
IVES 9 IVES Conference Series 9 Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Abstract

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables (~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins. These compounds may undergo hydrolysis or chemical reactions during cooperage processes, especially during heat treatment, which release some aromatic compounds or aromatic precursors having a genuine sensorial interest on wine aged in barrel or in contact with oak products. To date, no studies revealed a link between the proportions of these compounds in oak wood and the chemical and sensorial impact in wines ageing with oak wood. Our study showed that the proportions of these compounds evolved significantly during oak wood seasoning and the results highlighted the impact of selection factors. Respectively, extractables, lignins, hemicelluloses and cellulose proportions were mostly for non matured, 12 months, 18 months and 24 seasoning months. The development of a test plan with a Merlot wine from a second oak wood sampling, using similar modalities as the previous test plan allowed the evaluation of oak wood seasoning impact on the chemical composition of a wine ageing with oak wood pieces. Results showed a lowering of 8% in ellagitannins content of wine between 12 and 24 months modalities. An impact on volatile composition in wine has also been established: furanic aldehydes were positively correlated with a long maturation time (18 and 24 months), whereas phenolic aldehydes were positively correlated with a shorter seasoning time (12 months). Our results highlighted also the impact of selection factors on wine chemical composition. Sensorial analysis on this Merlot wine led to significant differences detected by the panel between 12 and 24 seasoning modalities, but not between 18 and 24 months modalities with triangular tests. Sensorial profiles were also established to attempt to associate the differences detected to one or more descriptors. For this test, results highlighted the difficulty for the panel to make a significant difference between 12 and 24 months modalities. However they contribute to explain the differences demonstrated with triangular tests for some seasoning modalities: toasted, bitterness, astringency, roundness and sweet perception.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alexandra Le Floch*, Michael Jourdes, Nicolas Mourey, Pierre-Louis Teissedre, Thomas Giordanengo

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.