Macrowine 2021
IVES 9 IVES Conference Series 9 Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Abstract

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables (~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins. These compounds may undergo hydrolysis or chemical reactions during cooperage processes, especially during heat treatment, which release some aromatic compounds or aromatic precursors having a genuine sensorial interest on wine aged in barrel or in contact with oak products. To date, no studies revealed a link between the proportions of these compounds in oak wood and the chemical and sensorial impact in wines ageing with oak wood. Our study showed that the proportions of these compounds evolved significantly during oak wood seasoning and the results highlighted the impact of selection factors. Respectively, extractables, lignins, hemicelluloses and cellulose proportions were mostly for non matured, 12 months, 18 months and 24 seasoning months. The development of a test plan with a Merlot wine from a second oak wood sampling, using similar modalities as the previous test plan allowed the evaluation of oak wood seasoning impact on the chemical composition of a wine ageing with oak wood pieces. Results showed a lowering of 8% in ellagitannins content of wine between 12 and 24 months modalities. An impact on volatile composition in wine has also been established: furanic aldehydes were positively correlated with a long maturation time (18 and 24 months), whereas phenolic aldehydes were positively correlated with a shorter seasoning time (12 months). Our results highlighted also the impact of selection factors on wine chemical composition. Sensorial analysis on this Merlot wine led to significant differences detected by the panel between 12 and 24 seasoning modalities, but not between 18 and 24 months modalities with triangular tests. Sensorial profiles were also established to attempt to associate the differences detected to one or more descriptors. For this test, results highlighted the difficulty for the panel to make a significant difference between 12 and 24 months modalities. However they contribute to explain the differences demonstrated with triangular tests for some seasoning modalities: toasted, bitterness, astringency, roundness and sweet perception.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alexandra Le Floch*, Michael Jourdes, Nicolas Mourey, Pierre-Louis Teissedre, Thomas Giordanengo

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.