Macrowine 2021
IVES 9 IVES Conference Series 9 Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Abstract

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables (~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins. These compounds may undergo hydrolysis or chemical reactions during cooperage processes, especially during heat treatment, which release some aromatic compounds or aromatic precursors having a genuine sensorial interest on wine aged in barrel or in contact with oak products. To date, no studies revealed a link between the proportions of these compounds in oak wood and the chemical and sensorial impact in wines ageing with oak wood. Our study showed that the proportions of these compounds evolved significantly during oak wood seasoning and the results highlighted the impact of selection factors. Respectively, extractables, lignins, hemicelluloses and cellulose proportions were mostly for non matured, 12 months, 18 months and 24 seasoning months. The development of a test plan with a Merlot wine from a second oak wood sampling, using similar modalities as the previous test plan allowed the evaluation of oak wood seasoning impact on the chemical composition of a wine ageing with oak wood pieces. Results showed a lowering of 8% in ellagitannins content of wine between 12 and 24 months modalities. An impact on volatile composition in wine has also been established: furanic aldehydes were positively correlated with a long maturation time (18 and 24 months), whereas phenolic aldehydes were positively correlated with a shorter seasoning time (12 months). Our results highlighted also the impact of selection factors on wine chemical composition. Sensorial analysis on this Merlot wine led to significant differences detected by the panel between 12 and 24 seasoning modalities, but not between 18 and 24 months modalities with triangular tests. Sensorial profiles were also established to attempt to associate the differences detected to one or more descriptors. For this test, results highlighted the difficulty for the panel to make a significant difference between 12 and 24 months modalities. However they contribute to explain the differences demonstrated with triangular tests for some seasoning modalities: toasted, bitterness, astringency, roundness and sweet perception.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alexandra Le Floch*, Michael Jourdes, Nicolas Mourey, Pierre-Louis Teissedre, Thomas Giordanengo

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.