Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Abstract

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF). The results showed that chemical and sensory profiles of coinoculated wines were different from Saccharomyces-strain wines. Coinoculated wines (CIQA and CIRF) showed lower alcohol content, total acidity and malic acid meanwhile higher isobutanol and isoamylic alcohols with respect to their respective controls (CTQA and CTRF). Ester composition was significantly affected by the fermentation strategy. Coinoculated wines (CIQA and CIRF) were characterized by higher contents of ethyl esters of branched acids, (EEBAs), ethyl cinnamates (CINNs) and ethyl propionate. Meanwhile CT wines (CTQA and CTRF) shown higher significant quantities of higher acohol acetates (HAAs) and ethyl esters of straight chain fatty acids (EEs). In control wines, RF yeast produced higher quantities of (HAAs) in comparison with QA, where isoamyl acetate was the main contributor to differences. Color differences between coinoculated wines and their respective controls were human eye-perceptible (ΔE*ab ≥ 3 CIELab units). Sensory analysis aroma showed no significant differences. In the mouth coinoculated wines resulted less heat, according with alcohol content; meanwhile control wines had higher aroma intensity. The highest global score was got for CTRF wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Belen Puertas*, Emma Cantos, Ignacio Soto, Jose Manuel Muñoz-Redondo, María Ruiz-Moreno

*IFAPA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...