GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Evaluation of vineyards, fruit and wine affected by wild fire smoke

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Abstract

Context and purpose of study ‐ Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke, and whether or not smoke taint flavors will result when fruit is fermented into wine. Phenolic smoke compounds bind with sugars in the fruit with enzymes (glycosyltransferases) and are then hydrolyzed during maturation, wine making and even in a taster’s mouth. Testing the fruit for volatile phenols and glycosides is both expensive and not completely predictive as standards are not well defined for damage based on smoke chemical content. Micro‐vinification even with partially ripened fruit is an inexpensive and fairly accurate method to quickly determine if fruit has a potential smoke taint problem. Wines can then be tasted for the presence of off flavors. Developing standards based on volatile phenolic and glycocide concentrations to predict whether fruit is affected by smoke and how wine will taste when vinified would be very helpful for accepting or rejecting fruit from affected areas.

Materials and methods ‐ Following wild fire smoke exposure, fruit was sampled and micro‐vinified during veraison and again 2 weeks before harvest from 13 Cabernet sauvignon vineyards in a transect 25 km across Lake County, California. A control vineyard unexposed to wildfire smoke was sampled outside of the area. Sub samples from each vineyard were analyzed immediately for guaiacol and 4‐methyl guaiacol. 19 liter wine lots were then microvinified, stabilized and bottled for each vineyard for both sampling dates. The wine was analyzed for volatile phenols and glycoside compounds (guaiacol and 4‐methyl guaiacol, methyl cresol, 4‐methyl syringol, o‐cresol, p‐cresol, syringol, syringol gentiobioside, methyl syringol gentiobioside, phenol rutinoside, cresol rutinoside, guiaocol rutinoside and methyl guaiacol rutinoside). A 14 member tasting panel evaluated the wines for smoke flavors. Panel members were able to detect off flavors in both sample sets, and tainted wines were highly correlated with elevated concentrations of volatile phenols and glycosides. GIS data of vineyard proximity to the fire, elevation, temperature and wind direction and speed were used to conduct multivariate analysis of factors affecting wine smoke compound chemicals and flavor impacts on wine.

Results ‐ Not all wines were affected; in this study, 6µ/l guaiacol was the threshold of detection for off flavors in wine by most tasters. Off flavors were much stronger in the wines made from riper fruit, as were the concentration of smoke compounds, by as much as six fold compared to unfermented fruit. Wind direction and speed, proximity to active fires, and temperature are the factors that are most highly correlated to smoke damage to fruit near wildfires. The control wine sample had no off flavors and no volatile phenols were detected. By contrast, some sites close to the edge of fires and immediately downwind were very heavily affected, and contained high levels of smoke taint compounds. This study will help to better understand when vineyards are most at risk to wild fire smoke damage, and how micro‐vinification may be a reliable and quick way to predict fermentation outcomes before harvest in vineyards affected by wildfire smoke.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Glenn MCGOURTY (1), Michael I. JONES (1), Anita OBERHOLSTER (2), Ryan KEIFFER (1)

(1) University of California Cooperative Extension Mendocino County, 890 North Bush Street, Ukiah, Ca. 95482
(2) University of California Davis Department of Viticulture and Enology, Davis,California, 95616

Contact the author

Keywords

Wild fire smoke, smoke taint in wine, volatile phenols, glycocides , guaiacol, 4‐methyl guaiacol

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.