GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Evaluation of vineyards, fruit and wine affected by wild fire smoke

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Abstract

Context and purpose of study ‐ Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke, and whether or not smoke taint flavors will result when fruit is fermented into wine. Phenolic smoke compounds bind with sugars in the fruit with enzymes (glycosyltransferases) and are then hydrolyzed during maturation, wine making and even in a taster’s mouth. Testing the fruit for volatile phenols and glycosides is both expensive and not completely predictive as standards are not well defined for damage based on smoke chemical content. Micro‐vinification even with partially ripened fruit is an inexpensive and fairly accurate method to quickly determine if fruit has a potential smoke taint problem. Wines can then be tasted for the presence of off flavors. Developing standards based on volatile phenolic and glycocide concentrations to predict whether fruit is affected by smoke and how wine will taste when vinified would be very helpful for accepting or rejecting fruit from affected areas.

Materials and methods ‐ Following wild fire smoke exposure, fruit was sampled and micro‐vinified during veraison and again 2 weeks before harvest from 13 Cabernet sauvignon vineyards in a transect 25 km across Lake County, California. A control vineyard unexposed to wildfire smoke was sampled outside of the area. Sub samples from each vineyard were analyzed immediately for guaiacol and 4‐methyl guaiacol. 19 liter wine lots were then microvinified, stabilized and bottled for each vineyard for both sampling dates. The wine was analyzed for volatile phenols and glycoside compounds (guaiacol and 4‐methyl guaiacol, methyl cresol, 4‐methyl syringol, o‐cresol, p‐cresol, syringol, syringol gentiobioside, methyl syringol gentiobioside, phenol rutinoside, cresol rutinoside, guiaocol rutinoside and methyl guaiacol rutinoside). A 14 member tasting panel evaluated the wines for smoke flavors. Panel members were able to detect off flavors in both sample sets, and tainted wines were highly correlated with elevated concentrations of volatile phenols and glycosides. GIS data of vineyard proximity to the fire, elevation, temperature and wind direction and speed were used to conduct multivariate analysis of factors affecting wine smoke compound chemicals and flavor impacts on wine.

Results ‐ Not all wines were affected; in this study, 6µ/l guaiacol was the threshold of detection for off flavors in wine by most tasters. Off flavors were much stronger in the wines made from riper fruit, as were the concentration of smoke compounds, by as much as six fold compared to unfermented fruit. Wind direction and speed, proximity to active fires, and temperature are the factors that are most highly correlated to smoke damage to fruit near wildfires. The control wine sample had no off flavors and no volatile phenols were detected. By contrast, some sites close to the edge of fires and immediately downwind were very heavily affected, and contained high levels of smoke taint compounds. This study will help to better understand when vineyards are most at risk to wild fire smoke damage, and how micro‐vinification may be a reliable and quick way to predict fermentation outcomes before harvest in vineyards affected by wildfire smoke.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Glenn MCGOURTY (1), Michael I. JONES (1), Anita OBERHOLSTER (2), Ryan KEIFFER (1)

(1) University of California Cooperative Extension Mendocino County, 890 North Bush Street, Ukiah, Ca. 95482
(2) University of California Davis Department of Viticulture and Enology, Davis,California, 95616

Contact the author

Keywords

Wild fire smoke, smoke taint in wine, volatile phenols, glycocides , guaiacol, 4‐methyl guaiacol

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

In the Champagne vineyards, spring frosts are the cause of significant variations in the volume of the harvest which are very penalizing for the trade. This variability is reflected both in time (years without frost alternating with years with severe frosts) and in space. Certain sectors of the vineyard are in fact statistically more susceptible to frost than others, but each year no municipality can consider itself immune to this climatic accident. The objective of the study is precisely to analyze the spatial distribution of frost and to determine its main mechanisms, linked to the topography of the hillsides, their orientation but also to regional meteorological variables.

Effect of different winemaking practices on chemical composition, aroma profile and sensory perception of ribolla gialla sparkling wines

This study aims at evaluating the effects of different refermentation methods (Martinotti/Charmat vs. Classic) on the chemical composition, aroma profile and sensory characteristics of Ribolla Gialla sparkling wines; furthermore, certain winemaking practices (skin contact and use of pectolytic enzymes) were investigated considering the extraction of varietal aromas and aroma precursors. METHODS: Sparkling wines were produced at pilot-plant scale. Concerning refermentation methods, traditional Martinotti (MB – 30 days length), extended Martinotti (ML) with 4 months of aging on lees and Classic method (CL) with 11 months of aging on lees were compared; in a second trial, skin contact (MM), enzyme addition on must also subjected to maceration (ME), and enzyme addition on base wine (VE) were evaluated. All experimental trials were performed in triplicate. Basic chemical composition, varietal (terpenes and C13-norisoprenoids in free and bound form) and non-varietal aroma compounds were evaluated by LLE-GCMS analysis; finally, sensory analysis was also performed, by descriptive testing.

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.

The relationship between enzyme treatment and polysaccharide extraction in wine making, and subsequent sensory effects in Cabernet Sauvignon wines

AIM To determine the effect of both ripeness and enzyme maceration on the astringency and bitterness perception of Cabernet Sauvignon winesRecent work has contributed to a more detailed understanding of the grape cell wall deconstruction process from ripening through crushing and fermentation, providing a better understanding of what role polysaccharides play in post-harvest fermentation of grapes(1,2). Current research on glycomics in red wine making suggest polysaccharides are important sensory impact molecules (3–6). METHODSOur experimental system harvests Cabernet Sauvignon grapes at three different ripeness levels and makes wine both with and without enzyme treatment.

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.