Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of sulfur compounds to the antioxidant stability of white wines

Impact of sulfur compounds to the antioxidant stability of white wines

Abstract

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3. Among the compounds in wine that potentially can inhibit oxidative reactions, thiol-containing compounds (RSH) have received increasing attention in recent years4. Moreover, the role of thiols as antioxidants in wine is usually assessed by quantifying the amounts of reduced and oxidized forms (i.e. GSH-GSSG) in wines5. In this study, in a vertical series of chardonnay wines, from 1995 to 2013 vintage, and from a same winery in Burgundy, we analyzed the amounts of targeted sulfur containing compounds. A good correlation among the total thiol content and the resistance against oxidation in different wines was observed. This provides direct information about the redox state of the wine and gives more insights in the mechanisms controlling wines ageing potential. Acknowledgements: We thank the regional council of Burgundy for their financial support.

1. Escudero, A.; Cacho, J.; Ferreira, V. Eur. Food Res. Tech. 2000, 211 (2), 105-110. 2. Elias, R. J.; Andersen, M. L.; Skibsted, L. H.; Waterhouse, A. L. Journal of Agricultural and Food Chemistry 2009, 57 (10), 4359-4365. 3. Nikolantonaki, M.; Coelho, C.; Gougeon, R. D. In A novel method for evaluation of white wine aging potential OENO, Bordeaux, Bordeaux, 2015. 4. Kreitman, G. Y.; Laurie, V. F.; Elias, R. J. Journal of Agricultural and Food Chemistry 2013, 61 (3), 685-692. 5. Mattivi, F.; Fedrizzi, B.; Zenato, A.; Tiefenthaler, P.; Tempesta, S.; Perenzoni, D.; Cantarella, P.; Simeoni, F.; Vrhovsek, U. Analytica Chimica Acta 2012, (0).

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Nikolantonaki*, Christian Coelho, Régis Gougeon

*Université de Bourgogne

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.