Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of sulfur compounds to the antioxidant stability of white wines

Impact of sulfur compounds to the antioxidant stability of white wines

Abstract

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3. Among the compounds in wine that potentially can inhibit oxidative reactions, thiol-containing compounds (RSH) have received increasing attention in recent years4. Moreover, the role of thiols as antioxidants in wine is usually assessed by quantifying the amounts of reduced and oxidized forms (i.e. GSH-GSSG) in wines5. In this study, in a vertical series of chardonnay wines, from 1995 to 2013 vintage, and from a same winery in Burgundy, we analyzed the amounts of targeted sulfur containing compounds. A good correlation among the total thiol content and the resistance against oxidation in different wines was observed. This provides direct information about the redox state of the wine and gives more insights in the mechanisms controlling wines ageing potential. Acknowledgements: We thank the regional council of Burgundy for their financial support.

1. Escudero, A.; Cacho, J.; Ferreira, V. Eur. Food Res. Tech. 2000, 211 (2), 105-110. 2. Elias, R. J.; Andersen, M. L.; Skibsted, L. H.; Waterhouse, A. L. Journal of Agricultural and Food Chemistry 2009, 57 (10), 4359-4365. 3. Nikolantonaki, M.; Coelho, C.; Gougeon, R. D. In A novel method for evaluation of white wine aging potential OENO, Bordeaux, Bordeaux, 2015. 4. Kreitman, G. Y.; Laurie, V. F.; Elias, R. J. Journal of Agricultural and Food Chemistry 2013, 61 (3), 685-692. 5. Mattivi, F.; Fedrizzi, B.; Zenato, A.; Tiefenthaler, P.; Tempesta, S.; Perenzoni, D.; Cantarella, P.; Simeoni, F.; Vrhovsek, U. Analytica Chimica Acta 2012, (0).

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Nikolantonaki*, Christian Coelho, Régis Gougeon

*Université de Bourgogne

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.