Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of sulfur compounds to the antioxidant stability of white wines

Impact of sulfur compounds to the antioxidant stability of white wines

Abstract

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3. Among the compounds in wine that potentially can inhibit oxidative reactions, thiol-containing compounds (RSH) have received increasing attention in recent years4. Moreover, the role of thiols as antioxidants in wine is usually assessed by quantifying the amounts of reduced and oxidized forms (i.e. GSH-GSSG) in wines5. In this study, in a vertical series of chardonnay wines, from 1995 to 2013 vintage, and from a same winery in Burgundy, we analyzed the amounts of targeted sulfur containing compounds. A good correlation among the total thiol content and the resistance against oxidation in different wines was observed. This provides direct information about the redox state of the wine and gives more insights in the mechanisms controlling wines ageing potential. Acknowledgements: We thank the regional council of Burgundy for their financial support.

1. Escudero, A.; Cacho, J.; Ferreira, V. Eur. Food Res. Tech. 2000, 211 (2), 105-110. 2. Elias, R. J.; Andersen, M. L.; Skibsted, L. H.; Waterhouse, A. L. Journal of Agricultural and Food Chemistry 2009, 57 (10), 4359-4365. 3. Nikolantonaki, M.; Coelho, C.; Gougeon, R. D. In A novel method for evaluation of white wine aging potential OENO, Bordeaux, Bordeaux, 2015. 4. Kreitman, G. Y.; Laurie, V. F.; Elias, R. J. Journal of Agricultural and Food Chemistry 2013, 61 (3), 685-692. 5. Mattivi, F.; Fedrizzi, B.; Zenato, A.; Tiefenthaler, P.; Tempesta, S.; Perenzoni, D.; Cantarella, P.; Simeoni, F.; Vrhovsek, U. Analytica Chimica Acta 2012, (0).

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maria Nikolantonaki*, Christian Coelho, Régis Gougeon

*Université de Bourgogne

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.