Macrowine 2021
IVES 9 IVES Conference Series 9 Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Abstract

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane. The purity of the isolated enzymes was checked using SDS-PAGE. The characteristics (molecular weight, % of glycosylation, specific activity, activity in function of pH of the enzyme isolated from each strain were studied with ABTS as a substrate. Results: The enzymes isolated from the three strains showed the same molecular weight, 97 KDa, in good agreement with the molecular weight previously determined for B. cinerea laccase using SDS-PAGE [2]. The percentage of glycosylation was high, being estimated in 70% on weight, also similar to that described by other authors [3]. Despite similar physical characteristics of the enzymes obtained from different strains, their activity were quite different. The enzymes isolated from B0510 and VA612 strains showed similar specific activity for ABTS oxidation, being 0.3 and 0.21 mM for their Km and their Vmax were 1.28 and 1.45 mM/min per milligram of enzyme respectively. The activity for RM344 enzyme was found much lower, with values of 0.78 mM for Km and 0.13 mM/min per milligram of enzyme for Vmax. The enzyme isolated from the B0510 strain presented its highest activity at pH 2.9 while VA612 and RM344 enzymes showed the maximum activity at pH 3.3. All these values were quite lower compared to previously measured by other authors [4-6]. Those differences in the enzyme activity may be related with differences in the active center of the enzyme and could have important consequences for the winemaking process depending on the strains of the B. cinerea strain involved in the infection of grapes.

[1]P. Ribéreau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu, Handbook of Enology, Volume 2: The chemistry of Wine Stabilization and Treatments, John Wiley & Sons, Ltd, 2000. [2]D. Slomczynski, J.P. Nakas, S.W. Tanenbaum, Applied and Environmental Microbiology, 61 (1995) 907. [3]C. THURSTON, Microbiology-Sgm, 140 (1994) 19. [4]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 23 (1984) 2713. [5]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 22 (1983) 1535. [6]M. Dubernet, P. Ribereau-Gayon, H.R. Lerner, E. Harel, A.M. Mayer, Phytochemistry, 16 (1977) 191.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Anne-Sophie Walker, Christiane Auclair, François Garcia, Francois-Xavier Sauvage, Jullien Drone, Natalia Quijada-Morin, Patrick Chemardin

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.