Macrowine 2021
IVES 9 IVES Conference Series 9 Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Abstract

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane. The purity of the isolated enzymes was checked using SDS-PAGE. The characteristics (molecular weight, % of glycosylation, specific activity, activity in function of pH of the enzyme isolated from each strain were studied with ABTS as a substrate. Results: The enzymes isolated from the three strains showed the same molecular weight, 97 KDa, in good agreement with the molecular weight previously determined for B. cinerea laccase using SDS-PAGE [2]. The percentage of glycosylation was high, being estimated in 70% on weight, also similar to that described by other authors [3]. Despite similar physical characteristics of the enzymes obtained from different strains, their activity were quite different. The enzymes isolated from B0510 and VA612 strains showed similar specific activity for ABTS oxidation, being 0.3 and 0.21 mM for their Km and their Vmax were 1.28 and 1.45 mM/min per milligram of enzyme respectively. The activity for RM344 enzyme was found much lower, with values of 0.78 mM for Km and 0.13 mM/min per milligram of enzyme for Vmax. The enzyme isolated from the B0510 strain presented its highest activity at pH 2.9 while VA612 and RM344 enzymes showed the maximum activity at pH 3.3. All these values were quite lower compared to previously measured by other authors [4-6]. Those differences in the enzyme activity may be related with differences in the active center of the enzyme and could have important consequences for the winemaking process depending on the strains of the B. cinerea strain involved in the infection of grapes.

[1]P. Ribéreau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu, Handbook of Enology, Volume 2: The chemistry of Wine Stabilization and Treatments, John Wiley & Sons, Ltd, 2000. [2]D. Slomczynski, J.P. Nakas, S.W. Tanenbaum, Applied and Environmental Microbiology, 61 (1995) 907. [3]C. THURSTON, Microbiology-Sgm, 140 (1994) 19. [4]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 23 (1984) 2713. [5]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 22 (1983) 1535. [6]M. Dubernet, P. Ribereau-Gayon, H.R. Lerner, E. Harel, A.M. Mayer, Phytochemistry, 16 (1977) 191.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Anne-Sophie Walker, Christiane Auclair, François Garcia, Francois-Xavier Sauvage, Jullien Drone, Natalia Quijada-Morin, Patrick Chemardin

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.