Macrowine 2021
IVES 9 IVES Conference Series 9 Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Abstract

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane. The purity of the isolated enzymes was checked using SDS-PAGE. The characteristics (molecular weight, % of glycosylation, specific activity, activity in function of pH of the enzyme isolated from each strain were studied with ABTS as a substrate. Results: The enzymes isolated from the three strains showed the same molecular weight, 97 KDa, in good agreement with the molecular weight previously determined for B. cinerea laccase using SDS-PAGE [2]. The percentage of glycosylation was high, being estimated in 70% on weight, also similar to that described by other authors [3]. Despite similar physical characteristics of the enzymes obtained from different strains, their activity were quite different. The enzymes isolated from B0510 and VA612 strains showed similar specific activity for ABTS oxidation, being 0.3 and 0.21 mM for their Km and their Vmax were 1.28 and 1.45 mM/min per milligram of enzyme respectively. The activity for RM344 enzyme was found much lower, with values of 0.78 mM for Km and 0.13 mM/min per milligram of enzyme for Vmax. The enzyme isolated from the B0510 strain presented its highest activity at pH 2.9 while VA612 and RM344 enzymes showed the maximum activity at pH 3.3. All these values were quite lower compared to previously measured by other authors [4-6]. Those differences in the enzyme activity may be related with differences in the active center of the enzyme and could have important consequences for the winemaking process depending on the strains of the B. cinerea strain involved in the infection of grapes.

[1]P. Ribéreau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu, Handbook of Enology, Volume 2: The chemistry of Wine Stabilization and Treatments, John Wiley & Sons, Ltd, 2000. [2]D. Slomczynski, J.P. Nakas, S.W. Tanenbaum, Applied and Environmental Microbiology, 61 (1995) 907. [3]C. THURSTON, Microbiology-Sgm, 140 (1994) 19. [4]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 23 (1984) 2713. [5]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 22 (1983) 1535. [6]M. Dubernet, P. Ribereau-Gayon, H.R. Lerner, E. Harel, A.M. Mayer, Phytochemistry, 16 (1977) 191.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Anne-Sophie Walker, Christiane Auclair, François Garcia, Francois-Xavier Sauvage, Jullien Drone, Natalia Quijada-Morin, Patrick Chemardin

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T