Macrowine 2021
IVES 9 IVES Conference Series 9 Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Abstract

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane. The purity of the isolated enzymes was checked using SDS-PAGE. The characteristics (molecular weight, % of glycosylation, specific activity, activity in function of pH of the enzyme isolated from each strain were studied with ABTS as a substrate. Results: The enzymes isolated from the three strains showed the same molecular weight, 97 KDa, in good agreement with the molecular weight previously determined for B. cinerea laccase using SDS-PAGE [2]. The percentage of glycosylation was high, being estimated in 70% on weight, also similar to that described by other authors [3]. Despite similar physical characteristics of the enzymes obtained from different strains, their activity were quite different. The enzymes isolated from B0510 and VA612 strains showed similar specific activity for ABTS oxidation, being 0.3 and 0.21 mM for their Km and their Vmax were 1.28 and 1.45 mM/min per milligram of enzyme respectively. The activity for RM344 enzyme was found much lower, with values of 0.78 mM for Km and 0.13 mM/min per milligram of enzyme for Vmax. The enzyme isolated from the B0510 strain presented its highest activity at pH 2.9 while VA612 and RM344 enzymes showed the maximum activity at pH 3.3. All these values were quite lower compared to previously measured by other authors [4-6]. Those differences in the enzyme activity may be related with differences in the active center of the enzyme and could have important consequences for the winemaking process depending on the strains of the B. cinerea strain involved in the infection of grapes.

[1]P. Ribéreau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu, Handbook of Enology, Volume 2: The chemistry of Wine Stabilization and Treatments, John Wiley & Sons, Ltd, 2000. [2]D. Slomczynski, J.P. Nakas, S.W. Tanenbaum, Applied and Environmental Microbiology, 61 (1995) 907. [3]C. THURSTON, Microbiology-Sgm, 140 (1994) 19. [4]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 23 (1984) 2713. [5]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 22 (1983) 1535. [6]M. Dubernet, P. Ribereau-Gayon, H.R. Lerner, E. Harel, A.M. Mayer, Phytochemistry, 16 (1977) 191.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Anne-Sophie Walker, Christiane Auclair, François Garcia, Francois-Xavier Sauvage, Jullien Drone, Natalia Quijada-Morin, Patrick Chemardin

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.