Macrowine 2021
IVES 9 IVES Conference Series 9 Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Abstract

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane. The purity of the isolated enzymes was checked using SDS-PAGE. The characteristics (molecular weight, % of glycosylation, specific activity, activity in function of pH of the enzyme isolated from each strain were studied with ABTS as a substrate. Results: The enzymes isolated from the three strains showed the same molecular weight, 97 KDa, in good agreement with the molecular weight previously determined for B. cinerea laccase using SDS-PAGE [2]. The percentage of glycosylation was high, being estimated in 70% on weight, also similar to that described by other authors [3]. Despite similar physical characteristics of the enzymes obtained from different strains, their activity were quite different. The enzymes isolated from B0510 and VA612 strains showed similar specific activity for ABTS oxidation, being 0.3 and 0.21 mM for their Km and their Vmax were 1.28 and 1.45 mM/min per milligram of enzyme respectively. The activity for RM344 enzyme was found much lower, with values of 0.78 mM for Km and 0.13 mM/min per milligram of enzyme for Vmax. The enzyme isolated from the B0510 strain presented its highest activity at pH 2.9 while VA612 and RM344 enzymes showed the maximum activity at pH 3.3. All these values were quite lower compared to previously measured by other authors [4-6]. Those differences in the enzyme activity may be related with differences in the active center of the enzyme and could have important consequences for the winemaking process depending on the strains of the B. cinerea strain involved in the infection of grapes.

[1]P. Ribéreau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu, Handbook of Enology, Volume 2: The chemistry of Wine Stabilization and Treatments, John Wiley & Sons, Ltd, 2000. [2]D. Slomczynski, J.P. Nakas, S.W. Tanenbaum, Applied and Environmental Microbiology, 61 (1995) 907. [3]C. THURSTON, Microbiology-Sgm, 140 (1994) 19. [4]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 23 (1984) 2713. [5]I. MARBACH, E. HAREL, A. MAYER, Phytochemistry, 22 (1983) 1535. [6]M. Dubernet, P. Ribereau-Gayon, H.R. Lerner, E. Harel, A.M. Mayer, Phytochemistry, 16 (1977) 191.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Cédric Saucier*, Anne-Sophie Walker, Christiane Auclair, François Garcia, Francois-Xavier Sauvage, Jullien Drone, Natalia Quijada-Morin, Patrick Chemardin

*Université de Montpellier

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.