Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Abstract

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect. The berry skin thickness parameter was positively affected by the treatment, resulting in a significant increase of this parameter for Nebbiolo (about 13 µm in average). Regarding phenolic compounds extractability, a simulated skin maceration in a wine-like solution was carried out on grapes belonging to the most represented density class for each cultivar. The simulated maceration lasted 7 days, and liquid samples were taken in the first 48 hours and at the end of the maceration, when the residual skins were further extracted in a different hydroalcoholic solution to evaluate the non-extracted fraction. Barbera samples did not show an influence of the treatment on anthocyanins during the maceration period, while Nebbiolo samples showed a higher anthocyanin content during and at the end of the maceration (+17%, as expressed on berry weight). The proanthocyanidin and vanillin assays, aimed at the evaluation of high and low molecular mass flavanols, evidenced a similar behavior. An improved anthocyanin and tannin management of Nebbiolo grapes is crucial because of the peculiarities of this cultivar, and a higher extraction and total content of these compounds could possibly result in improved wine phenolic content or even higher yields without compromising the wine quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Susana Río Segade*, Carlos Suárez Martínez, Carolina Ossola, Fabrizio Battista, Javier Téllez Quemada, Luca Rolle, Maria Alessandra Paissoni, Paola Vagnoli, Simone Giacosa, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.