Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Abstract

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect. The berry skin thickness parameter was positively affected by the treatment, resulting in a significant increase of this parameter for Nebbiolo (about 13 µm in average). Regarding phenolic compounds extractability, a simulated skin maceration in a wine-like solution was carried out on grapes belonging to the most represented density class for each cultivar. The simulated maceration lasted 7 days, and liquid samples were taken in the first 48 hours and at the end of the maceration, when the residual skins were further extracted in a different hydroalcoholic solution to evaluate the non-extracted fraction. Barbera samples did not show an influence of the treatment on anthocyanins during the maceration period, while Nebbiolo samples showed a higher anthocyanin content during and at the end of the maceration (+17%, as expressed on berry weight). The proanthocyanidin and vanillin assays, aimed at the evaluation of high and low molecular mass flavanols, evidenced a similar behavior. An improved anthocyanin and tannin management of Nebbiolo grapes is crucial because of the peculiarities of this cultivar, and a higher extraction and total content of these compounds could possibly result in improved wine phenolic content or even higher yields without compromising the wine quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Susana Río Segade*, Carlos Suárez Martínez, Carolina Ossola, Fabrizio Battista, Javier Téllez Quemada, Luca Rolle, Maria Alessandra Paissoni, Paola Vagnoli, Simone Giacosa, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.