Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Abstract

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect. The berry skin thickness parameter was positively affected by the treatment, resulting in a significant increase of this parameter for Nebbiolo (about 13 µm in average). Regarding phenolic compounds extractability, a simulated skin maceration in a wine-like solution was carried out on grapes belonging to the most represented density class for each cultivar. The simulated maceration lasted 7 days, and liquid samples were taken in the first 48 hours and at the end of the maceration, when the residual skins were further extracted in a different hydroalcoholic solution to evaluate the non-extracted fraction. Barbera samples did not show an influence of the treatment on anthocyanins during the maceration period, while Nebbiolo samples showed a higher anthocyanin content during and at the end of the maceration (+17%, as expressed on berry weight). The proanthocyanidin and vanillin assays, aimed at the evaluation of high and low molecular mass flavanols, evidenced a similar behavior. An improved anthocyanin and tannin management of Nebbiolo grapes is crucial because of the peculiarities of this cultivar, and a higher extraction and total content of these compounds could possibly result in improved wine phenolic content or even higher yields without compromising the wine quality.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Susana Río Segade*, Carlos Suárez Martínez, Carolina Ossola, Fabrizio Battista, Javier Téllez Quemada, Luca Rolle, Maria Alessandra Paissoni, Paola Vagnoli, Simone Giacosa, Vincenzo Gerbi

*Università di Torino

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.