Macrowine 2021
IVES 9 IVES Conference Series 9 Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Abstract

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations. In the Sauvignon blanc fermentations SC-monoculture had the highest number of esters in the highest relative concentrations but all the yeasts had distinct ester profiles. CZ-SC displayed the highest number of terpenes in high concentrations but also produced a large amount of acetic acid. KA-SC was high in ethyl acetate. TD-SC had fewer esters but three distinctly higher thiol compounds. PK-SC had some off odor compounds while the MP had high levels of different methyl butyl-, methyl propyl-, and phenyethyl esters. LT-SC showed a relatively high number of increased acetate esters and certain terpenes. In the Shiraz fermentations on the other hand the LT-SC sequential fermentations were the most significantly different primarily in their ester, alcohol and terpene profiles as well as 1-ethyl-1H-pyrrole-2-carboxaldehyde, a pyrrole which has been described as having a burnt, roasted or smoky aroma. This compound was not found in any of the Sauvignon blanc fermentations. The other Shiraz non-Saccharomyces fermentations, with the exception of the LT-SC sequential fermentations, were distinct for their general lack of volatile compounds, a notable exception being terpenes. This differs significantly from the profiles seen in the Sauvignon blanc fermentations. Overall, this study gives a more detailed profile of these yeasts in two different grape musts and shows that non-Saccharomyces have great potential for increasing the complexity of both red and white wine volatile profiles.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Margaret Whitener*, Benoit Divol, Jan Stanstrup, Maret Du Toit, Urska Vrhovsek

*Fondazione Edmund Mach

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.