GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Abstract

Context and purpose of the study – Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions, in terms of rainfall and water availability. Taking both appellations together, they account for close to 4000 ha cultivated by more than 1300 vine growers. Due to water stress during the growing season, irrigation is considered a suitable tool to ensure grape quality at harvest in order to maintain the high‐quality standard of these regions’ wines. However, optimal irrigation strategies based on plant water stress evaluation are not often undertaken, which may lead to inefficient water management. The objective of this study is to develop a regional irrigation strategy based on specific water potential measurements and meteorological data from different region sub‐areas, in order to achieve an overall 10% reduction of water consumption in the region.

Material and methods – During two growing seasons (2017 and 2018), a total of 53 vineyard plots were monitored, which represented the main grape varieties planted in the region (Grenache, Carignan, Cabernet-Sauvignon and Syrah) and were classified in eight sub‐areas inside the region. From pea‐size to harvest (phenological stages), measurements of phenology, water potential and meteorological data were collected. Irrigation recommendations were then given to growers, to avoid water potential below ‐1.4 MPa. Generic agronomic characteristics and production of the studied plots were also evaluated. Data on water use in the monitored vineyard network were compared to historical data of water use in the region. In addition, a specific field experiment was conducted to assess water consumption reduction using three different irrigation strategies.

Results – The monitoring of 53 vineyard plots per year was carried out during 2017 and 2018, with different meteorological conditions, accounting for a more water deficient season in 2017. Overall, more than 50 irrigation recommendations were emitted to growers. The water consumption with the optimized irrigation strategy ranged from 10 to 83 liters per ha, for the whole of 53 vineyards evaluated. Compared to the generic consumption reference of 80 l ha‐1, the recommended dose saved up to 87 % of the irrigation water per year. Moreover, two irrigation strategies also reduced water consumption compared to local grower strategy in the field trial comparing three strategies. The results of this study will help to develop an irrigation strategy, specific by region’s sub‐zones, in order to optimize water consumption while maintaining a high quality of the produced wines of this region. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Carlos CALVO‐GARRIDO (1), Mario DE LA FUENTE (2), Rafael RODA (1), Joan RUIZ (1), Marcelo MAZZIERI (1), Sergi DE LAMO (1)

(1) VITEC – Centre Tecnològic del Vi, Ctra de Porrera, Km 1, 43730 – Falset, Spain
(2) PTV-Plataforma Tecnológica del Vino, C/ Musgo no2, Bajo-B. -28023 – Madrid, Spain

Contact the author

Keywords

Vitis vinifera, Irrigation, Water use, water stress, regional strategy

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae.

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.