GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Abstract

Context and purpose of the study – Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions, in terms of rainfall and water availability. Taking both appellations together, they account for close to 4000 ha cultivated by more than 1300 vine growers. Due to water stress during the growing season, irrigation is considered a suitable tool to ensure grape quality at harvest in order to maintain the high‐quality standard of these regions’ wines. However, optimal irrigation strategies based on plant water stress evaluation are not often undertaken, which may lead to inefficient water management. The objective of this study is to develop a regional irrigation strategy based on specific water potential measurements and meteorological data from different region sub‐areas, in order to achieve an overall 10% reduction of water consumption in the region.

Material and methods – During two growing seasons (2017 and 2018), a total of 53 vineyard plots were monitored, which represented the main grape varieties planted in the region (Grenache, Carignan, Cabernet-Sauvignon and Syrah) and were classified in eight sub‐areas inside the region. From pea‐size to harvest (phenological stages), measurements of phenology, water potential and meteorological data were collected. Irrigation recommendations were then given to growers, to avoid water potential below ‐1.4 MPa. Generic agronomic characteristics and production of the studied plots were also evaluated. Data on water use in the monitored vineyard network were compared to historical data of water use in the region. In addition, a specific field experiment was conducted to assess water consumption reduction using three different irrigation strategies.

Results – The monitoring of 53 vineyard plots per year was carried out during 2017 and 2018, with different meteorological conditions, accounting for a more water deficient season in 2017. Overall, more than 50 irrigation recommendations were emitted to growers. The water consumption with the optimized irrigation strategy ranged from 10 to 83 liters per ha, for the whole of 53 vineyards evaluated. Compared to the generic consumption reference of 80 l ha‐1, the recommended dose saved up to 87 % of the irrigation water per year. Moreover, two irrigation strategies also reduced water consumption compared to local grower strategy in the field trial comparing three strategies. The results of this study will help to develop an irrigation strategy, specific by region’s sub‐zones, in order to optimize water consumption while maintaining a high quality of the produced wines of this region. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Carlos CALVO‐GARRIDO (1), Mario DE LA FUENTE (2), Rafael RODA (1), Joan RUIZ (1), Marcelo MAZZIERI (1), Sergi DE LAMO (1)

(1) VITEC – Centre Tecnològic del Vi, Ctra de Porrera, Km 1, 43730 – Falset, Spain
(2) PTV-Plataforma Tecnológica del Vino, C/ Musgo no2, Bajo-B. -28023 – Madrid, Spain

Contact the author

Keywords

Vitis vinifera, Irrigation, Water use, water stress, regional strategy

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The use of local knowledge relating to vineyard performance to identify viticultural terroirs in Stellenbosch and surrounds

A terroir represents grouping of homogenous environmental units, or natural terroir units, based on the typicality of the products obtained. Identification and characterisation of terroirs depends on knowledge of environmental parameters, the functioning of the grapevine and characteristics of the final product, which must be placed in a spatial context.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.