GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Abstract

Context and purpose of the study – Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions, in terms of rainfall and water availability. Taking both appellations together, they account for close to 4000 ha cultivated by more than 1300 vine growers. Due to water stress during the growing season, irrigation is considered a suitable tool to ensure grape quality at harvest in order to maintain the high‐quality standard of these regions’ wines. However, optimal irrigation strategies based on plant water stress evaluation are not often undertaken, which may lead to inefficient water management. The objective of this study is to develop a regional irrigation strategy based on specific water potential measurements and meteorological data from different region sub‐areas, in order to achieve an overall 10% reduction of water consumption in the region.

Material and methods – During two growing seasons (2017 and 2018), a total of 53 vineyard plots were monitored, which represented the main grape varieties planted in the region (Grenache, Carignan, Cabernet-Sauvignon and Syrah) and were classified in eight sub‐areas inside the region. From pea‐size to harvest (phenological stages), measurements of phenology, water potential and meteorological data were collected. Irrigation recommendations were then given to growers, to avoid water potential below ‐1.4 MPa. Generic agronomic characteristics and production of the studied plots were also evaluated. Data on water use in the monitored vineyard network were compared to historical data of water use in the region. In addition, a specific field experiment was conducted to assess water consumption reduction using three different irrigation strategies.

Results – The monitoring of 53 vineyard plots per year was carried out during 2017 and 2018, with different meteorological conditions, accounting for a more water deficient season in 2017. Overall, more than 50 irrigation recommendations were emitted to growers. The water consumption with the optimized irrigation strategy ranged from 10 to 83 liters per ha, for the whole of 53 vineyards evaluated. Compared to the generic consumption reference of 80 l ha‐1, the recommended dose saved up to 87 % of the irrigation water per year. Moreover, two irrigation strategies also reduced water consumption compared to local grower strategy in the field trial comparing three strategies. The results of this study will help to develop an irrigation strategy, specific by region’s sub‐zones, in order to optimize water consumption while maintaining a high quality of the produced wines of this region. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Carlos CALVO‐GARRIDO (1), Mario DE LA FUENTE (2), Rafael RODA (1), Joan RUIZ (1), Marcelo MAZZIERI (1), Sergi DE LAMO (1)

(1) VITEC – Centre Tecnològic del Vi, Ctra de Porrera, Km 1, 43730 – Falset, Spain
(2) PTV-Plataforma Tecnológica del Vino, C/ Musgo no2, Bajo-B. -28023 – Madrid, Spain

Contact the author

Keywords

Vitis vinifera, Irrigation, Water use, water stress, regional strategy

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

Fructose implication in the Sotolon formation in fortified wines: preliminary results

Sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone) is a naturally occurring odorant compound with a strong caramel/spice-like scent, present in many foodstuffs. Its positive contribution for the aroma of different fortified wines such as Madeira, Port and Sherry is recognized. In contrast, it is also known to be responsible for the off-flavor character of prematurely aged dry white wines. The formation mechanisms of sotolon in wine are still not well elucidated, particularly in Madeira wines, which are submitted to thermal processing during its traditional ageing. The sotolon formation in these wines has been related to sugar degradation mechanisms, particularly from fructose [1].

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.