GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Efficient irrigation strategies and water use reduction in the high quality production regions of Priorat and Montsant (Spain)

Abstract

Context and purpose of the study – Priorat and Montsant Appellations of Origin are located in the south of Catalonia (North‐East Spain), under severe Mediterranean climatic conditions, in terms of rainfall and water availability. Taking both appellations together, they account for close to 4000 ha cultivated by more than 1300 vine growers. Due to water stress during the growing season, irrigation is considered a suitable tool to ensure grape quality at harvest in order to maintain the high‐quality standard of these regions’ wines. However, optimal irrigation strategies based on plant water stress evaluation are not often undertaken, which may lead to inefficient water management. The objective of this study is to develop a regional irrigation strategy based on specific water potential measurements and meteorological data from different region sub‐areas, in order to achieve an overall 10% reduction of water consumption in the region.

Material and methods – During two growing seasons (2017 and 2018), a total of 53 vineyard plots were monitored, which represented the main grape varieties planted in the region (Grenache, Carignan, Cabernet-Sauvignon and Syrah) and were classified in eight sub‐areas inside the region. From pea‐size to harvest (phenological stages), measurements of phenology, water potential and meteorological data were collected. Irrigation recommendations were then given to growers, to avoid water potential below ‐1.4 MPa. Generic agronomic characteristics and production of the studied plots were also evaluated. Data on water use in the monitored vineyard network were compared to historical data of water use in the region. In addition, a specific field experiment was conducted to assess water consumption reduction using three different irrigation strategies.

Results – The monitoring of 53 vineyard plots per year was carried out during 2017 and 2018, with different meteorological conditions, accounting for a more water deficient season in 2017. Overall, more than 50 irrigation recommendations were emitted to growers. The water consumption with the optimized irrigation strategy ranged from 10 to 83 liters per ha, for the whole of 53 vineyards evaluated. Compared to the generic consumption reference of 80 l ha‐1, the recommended dose saved up to 87 % of the irrigation water per year. Moreover, two irrigation strategies also reduced water consumption compared to local grower strategy in the field trial comparing three strategies. The results of this study will help to develop an irrigation strategy, specific by region’s sub‐zones, in order to optimize water consumption while maintaining a high quality of the produced wines of this region. 

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Carlos CALVO‐GARRIDO (1), Mario DE LA FUENTE (2), Rafael RODA (1), Joan RUIZ (1), Marcelo MAZZIERI (1), Sergi DE LAMO (1)

(1) VITEC – Centre Tecnològic del Vi, Ctra de Porrera, Km 1, 43730 – Falset, Spain
(2) PTV-Plataforma Tecnológica del Vino, C/ Musgo no2, Bajo-B. -28023 – Madrid, Spain

Contact the author

Keywords

Vitis vinifera, Irrigation, Water use, water stress, regional strategy

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects.

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Climat-roche-sol-fromage. Cartographie fonctionnelle du terroir. Exemple de l’A.O.C. Comté

La place prépondérante que prend le Massif Jurassien en Franche-Comté confère à la région un caractère montagneux qui a orienté l’agriculture vers l’élevage laitier. Cette vocation pastorale marquée et de rudes conditions climatiques sont à l’origine de la production, attestée depuis l’Antiquité, d’un fromage de réserve pour la longue période hivernale. Cette tradition fromagère, liée à des prairies naturelles, a perduré jusqu’à nos jours. La qualité et la spécificité du produit actuel, le fromage de Comté, ont été reconnues dès 1952 par l’attribution d’un label et dès 1958, par la reconnaissance d’un périmètre d’appellation d’origine contrôlée, l’A.O.C. Comté (fig. 1).