Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 A research agenda for terroir: an empirical, international expert study

A research agenda for terroir: an empirical, international expert study


Aim: Terroir is a French concept relating the qualities and quality of agricultural products to their physical and socio-cultural place of origin. It is increasingly used by business and policymakers as a marketing technique to provide economic benefits (e.g. Lenglet, 2014; Wine Australia, 2015), and to potentially preserve cultural heritage (e.g. Bauer, 2009) and the environment (e.g. Bowen, 2010). The rising interest in this interdisciplinary and sometimes controversial concept (e.g. Bosker, 2017; Matthews, 2016) presents an opportune time to consider important future directions for research and collaboration. The aim of this expert study was to develop a research agenda for future terroir studies, informed by academic, industry and government experts, which is interdisciplinary and international in scope.

Methods and Results: This project employed a Delphi approach, an iterative framework for eliciting expert views and building consensuses (Dalkey and Helmer, 1963; Hasson et al., 2000; Rowe and Wright, 1999). The first round of the project consisted of 40 interviews with academic, business and policy experts to identify important research priorities for terroir. Experts were selected on the basis of publication counts and seniority for academics, and global influence/recognition for industry members and policymakers, as well as ensuring a balance of geographic regions and genders. A confirmatory survey asked experts to rank priorities identified by two or more experts in interviews, to identify the most promising areas for future terroir studies. 


The final list of identified research priorities will be presented at the conference. Preliminary priorities identified from the interviews are:

  1. terroir’s economic and marketing advantages for business and regions;
  2. consumer views of terroir;
  3. taste, flavour and terroir;
  4. terroir’s meaning and use in different products, cultures and places;
  5. social issues and terroir (e.g. succession planning, gender inequity);
  6. the plant–place biophysical relationship;
  7. climate change effects and adaptation, for agriculture and more broadly;
  8. terroir as a dynamic concept, changing through time; and
  9. terroir’s connection to environmental sustainability.

Significance and Impact of the Study: The research areas and agenda identified provide a basis for future work on terroir, to ensures its relevance and significance for researchers, industry and policy, as well as cohesions as an area of research. The research agenda may also provide valuable ideas for new project development, including for research students. 


Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video


Guy Leedon1*, Patrick L’Espoir Decosta1, Gary Buttriss1, Vinh Lu1

1The Research School of Management, College of Business and Economics, The Australian National University, Canberra, ACT, Australia

Contact the author


Terroir, research agenda, research priorities, expert study


IVES Conference Series | Terroir 2020


Related articles…

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Struck flint aroma in Chardonnay wines: what causes it and how much is too much?

Struck flint/struck match/gun smoke/mineral aroma is considered desirable in some styles of wines, with this character sometimes evident in wines such as Burgundian Chablis and cooler climate barrel-fermented Australian Chardonnay.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production


Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.