Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of bottle closure type on sensory characteristics of Chasselas wines

Effects of bottle closure type on sensory characteristics of Chasselas wines

Abstract

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants. Although must handling is done at the very beginning of the winemaking process, exposure of the must to O2 at this early stage is profoundly connected with other steps at a much later stage of the winemaking process, this is particularly true for post-bottling O2 exposure and therefore bottle closure selection. Post-bottling wine ageing is a slow and complex process, in which the bottle closures play a fundamental role, due to their O2 permeability. During this period, sensory characteristics of the wine are likely to change as a result of the exposure to O2. For these reasons, increasing numbers of industry professionals agreed that consistent O2 transmission is important and that chosen bottle closures should be matched with the wine type. The aim of this work was to determine the impact of dissolved oxygen and bottle closure oxygen transfer rates on the evolution of wines made from Chasselas grapes with different levels of O2 protection (protected and surexposed). The resulting wines were bottled with different amounts of dissolved O2 (DO) and sealed with three different corks (two co-extruded and one agglomerated type) and one screwcap. O2 measurements were taken after bottling on a weekly bases during the first month of storage, and after 1, 3, 6, 12, 18 and 22 months after bottling. The evolution of total O2 transfer through identical closures into empty bottles, previously purged with nitrogen was also investigated. As already described, FSO2 decreased during bottle storage, with a rapid decline in the first 3 months followed by a slower decline after 6 months of storage. The extent of FSO2 decline was essentially affected by DO at bottling and by must management. A panel of 20 judges was trained to carry out a sensory evaluation of the wines, by Flash Profile and Napping, 6, 12, 18 and 22 months after bottling. Beyond the period of 12 months, oxidative and reductive profiles could be observed mainly related to the type of closure and to must management. At 22 months, discriminatory tests allowed us to distinguish the impact of each closures. These preliminary results are expected to increase our understanding for the optimum balance of pre-fermentative/post-bottling O2 exposure of Chasselas wines, and help guide winemakers in their choice for the perfectly adapted bottle closures.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Jean Baptiste Dieval, Julien Ducruet, Olivier Paviot, Pascale Deneulin, Patrik Schönenberger, Pierrick Rebenaque, Stephane Vidal

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.