Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of bottle closure type on sensory characteristics of Chasselas wines

Effects of bottle closure type on sensory characteristics of Chasselas wines

Abstract

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants. Although must handling is done at the very beginning of the winemaking process, exposure of the must to O2 at this early stage is profoundly connected with other steps at a much later stage of the winemaking process, this is particularly true for post-bottling O2 exposure and therefore bottle closure selection. Post-bottling wine ageing is a slow and complex process, in which the bottle closures play a fundamental role, due to their O2 permeability. During this period, sensory characteristics of the wine are likely to change as a result of the exposure to O2. For these reasons, increasing numbers of industry professionals agreed that consistent O2 transmission is important and that chosen bottle closures should be matched with the wine type. The aim of this work was to determine the impact of dissolved oxygen and bottle closure oxygen transfer rates on the evolution of wines made from Chasselas grapes with different levels of O2 protection (protected and surexposed). The resulting wines were bottled with different amounts of dissolved O2 (DO) and sealed with three different corks (two co-extruded and one agglomerated type) and one screwcap. O2 measurements were taken after bottling on a weekly bases during the first month of storage, and after 1, 3, 6, 12, 18 and 22 months after bottling. The evolution of total O2 transfer through identical closures into empty bottles, previously purged with nitrogen was also investigated. As already described, FSO2 decreased during bottle storage, with a rapid decline in the first 3 months followed by a slower decline after 6 months of storage. The extent of FSO2 decline was essentially affected by DO at bottling and by must management. A panel of 20 judges was trained to carry out a sensory evaluation of the wines, by Flash Profile and Napping, 6, 12, 18 and 22 months after bottling. Beyond the period of 12 months, oxidative and reductive profiles could be observed mainly related to the type of closure and to must management. At 22 months, discriminatory tests allowed us to distinguish the impact of each closures. These preliminary results are expected to increase our understanding for the optimum balance of pre-fermentative/post-bottling O2 exposure of Chasselas wines, and help guide winemakers in their choice for the perfectly adapted bottle closures.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Jean Baptiste Dieval, Julien Ducruet, Olivier Paviot, Pascale Deneulin, Patrik Schönenberger, Pierrick Rebenaque, Stephane Vidal

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.