Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of bottle closure type on sensory characteristics of Chasselas wines

Effects of bottle closure type on sensory characteristics of Chasselas wines

Abstract

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants. Although must handling is done at the very beginning of the winemaking process, exposure of the must to O2 at this early stage is profoundly connected with other steps at a much later stage of the winemaking process, this is particularly true for post-bottling O2 exposure and therefore bottle closure selection. Post-bottling wine ageing is a slow and complex process, in which the bottle closures play a fundamental role, due to their O2 permeability. During this period, sensory characteristics of the wine are likely to change as a result of the exposure to O2. For these reasons, increasing numbers of industry professionals agreed that consistent O2 transmission is important and that chosen bottle closures should be matched with the wine type. The aim of this work was to determine the impact of dissolved oxygen and bottle closure oxygen transfer rates on the evolution of wines made from Chasselas grapes with different levels of O2 protection (protected and surexposed). The resulting wines were bottled with different amounts of dissolved O2 (DO) and sealed with three different corks (two co-extruded and one agglomerated type) and one screwcap. O2 measurements were taken after bottling on a weekly bases during the first month of storage, and after 1, 3, 6, 12, 18 and 22 months after bottling. The evolution of total O2 transfer through identical closures into empty bottles, previously purged with nitrogen was also investigated. As already described, FSO2 decreased during bottle storage, with a rapid decline in the first 3 months followed by a slower decline after 6 months of storage. The extent of FSO2 decline was essentially affected by DO at bottling and by must management. A panel of 20 judges was trained to carry out a sensory evaluation of the wines, by Flash Profile and Napping, 6, 12, 18 and 22 months after bottling. Beyond the period of 12 months, oxidative and reductive profiles could be observed mainly related to the type of closure and to must management. At 22 months, discriminatory tests allowed us to distinguish the impact of each closures. These preliminary results are expected to increase our understanding for the optimum balance of pre-fermentative/post-bottling O2 exposure of Chasselas wines, and help guide winemakers in their choice for the perfectly adapted bottle closures.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Jean Baptiste Dieval, Julien Ducruet, Olivier Paviot, Pascale Deneulin, Patrik Schönenberger, Pierrick Rebenaque, Stephane Vidal

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.