Macrowine 2021
IVES 9 IVES Conference Series 9 Effects of bottle closure type on sensory characteristics of Chasselas wines

Effects of bottle closure type on sensory characteristics of Chasselas wines

Abstract

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants. Although must handling is done at the very beginning of the winemaking process, exposure of the must to O2 at this early stage is profoundly connected with other steps at a much later stage of the winemaking process, this is particularly true for post-bottling O2 exposure and therefore bottle closure selection. Post-bottling wine ageing is a slow and complex process, in which the bottle closures play a fundamental role, due to their O2 permeability. During this period, sensory characteristics of the wine are likely to change as a result of the exposure to O2. For these reasons, increasing numbers of industry professionals agreed that consistent O2 transmission is important and that chosen bottle closures should be matched with the wine type. The aim of this work was to determine the impact of dissolved oxygen and bottle closure oxygen transfer rates on the evolution of wines made from Chasselas grapes with different levels of O2 protection (protected and surexposed). The resulting wines were bottled with different amounts of dissolved O2 (DO) and sealed with three different corks (two co-extruded and one agglomerated type) and one screwcap. O2 measurements were taken after bottling on a weekly bases during the first month of storage, and after 1, 3, 6, 12, 18 and 22 months after bottling. The evolution of total O2 transfer through identical closures into empty bottles, previously purged with nitrogen was also investigated. As already described, FSO2 decreased during bottle storage, with a rapid decline in the first 3 months followed by a slower decline after 6 months of storage. The extent of FSO2 decline was essentially affected by DO at bottling and by must management. A panel of 20 judges was trained to carry out a sensory evaluation of the wines, by Flash Profile and Napping, 6, 12, 18 and 22 months after bottling. Beyond the period of 12 months, oxidative and reductive profiles could be observed mainly related to the type of closure and to must management. At 22 months, discriminatory tests allowed us to distinguish the impact of each closures. These preliminary results are expected to increase our understanding for the optimum balance of pre-fermentative/post-bottling O2 exposure of Chasselas wines, and help guide winemakers in their choice for the perfectly adapted bottle closures.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Jean Baptiste Dieval, Julien Ducruet, Olivier Paviot, Pascale Deneulin, Patrik Schönenberger, Pierrick Rebenaque, Stephane Vidal

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].