Macrowine 2021
IVES 9 IVES Conference Series 9 Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Abstract

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption. The root system (i.e rootstock) plays an important role in the uptake, reduction, transport and storage of nitrogen, and the water balance of the plant. In this context, we studied the mechanisms involved in the regulation of the synthesis of flavonoids in berries in response to nitrogen nutrition with different scion/rootstock combinations. Two varieties (Cabernet Sauvignon and Pinot Noir) were subjected to different nitrogen supplies in two experimental systems, in pots under semi-controlled conditions and in a vineyard. Agronomic analysis confirmed that high nitrogen supply increased the nitrogen content of different organs (leaf blades, petioles and berries) as well as leaf surface area and cane pruning weight. Metabolomic analyses of berry skins revealed an accumulation of secondary metabolites whose nature depended on the different rootstock/scion combinations studied. In addition, an increase in the synthesis of anthocyanins and flavonols was observed in the berry skins in response to the decrease in nitrogen nutrition. High nitrogen supply also increased the average degree of polymerization of tannins, while the contents of flavan-3-ols and procyanidins in the seeds and skins of the berries were not affected. Global transcriptome (using RNA sequencing) and targeted (qPCR) analyses showed changes in the abundance of transcripts of genes related to the metabolism of flavonoids in response to nitrogen status. Nitrogen supply also influenced the transcript amounts of positive (MYB) and negative (Lateral Boundary Organ Domain) transcription factors controlling of the biosynthesis of flavonoids.

Acknowledgements: This work was funded by the Conseil Interprofessionnel du Vin de Bordeaux, the KBBE Innovine project and COST Action FA 1106.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Serge Delrot*, Aude Habran, Cornelis van Leeuwen, Eric Gomes, Flavia Guzzo, Ghislaine Hilbert, Mauro Commisso, Pierre Helwi, Stefano Negri

*UMR1287-EGFV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

A preliminary study of clonal selection in cv. Viura in relation to varietal aroma profile

Viura is a synonym for Macabeo and currently it is the most widely planted white grape variety in D.O.Ca. Rioja, with 3,569 ha, representing 84% of the white grape cultivated area. It is a generous-yielding grape, presenting low values of titratable acidity and with large and compact clusters which makes it susceptible to Botrytis cinerea. Thus, this variety not always satisfies the wine grower’s prospects. Nowadays, the available plant material is scarce, moreover, it was selected on the basis of other quality criteria, not currently requested.

Influence of toasting oak wood on ellagitannin structures

Ellagitannins (ETs) have been reported to be the main phenolic compounds found in oak wood. These compounds, belonging to the hydrolysable tannin class of polyphenols, are esters of hexahydroxydiphenic acid (HHDP) and a polyol, usually glucose or quinic acid. They own their name to their capacity to be hydrolysed and liberate ellagic acid and they have an impact on astringency and bitterness sensation, which is strongly dependant on their structure. The toasting phase is particularly crucial in barrels fabrication and influences wood composition.