Macrowine 2021
IVES 9 IVES Conference Series 9 Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Abstract

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption. The root system (i.e rootstock) plays an important role in the uptake, reduction, transport and storage of nitrogen, and the water balance of the plant. In this context, we studied the mechanisms involved in the regulation of the synthesis of flavonoids in berries in response to nitrogen nutrition with different scion/rootstock combinations. Two varieties (Cabernet Sauvignon and Pinot Noir) were subjected to different nitrogen supplies in two experimental systems, in pots under semi-controlled conditions and in a vineyard. Agronomic analysis confirmed that high nitrogen supply increased the nitrogen content of different organs (leaf blades, petioles and berries) as well as leaf surface area and cane pruning weight. Metabolomic analyses of berry skins revealed an accumulation of secondary metabolites whose nature depended on the different rootstock/scion combinations studied. In addition, an increase in the synthesis of anthocyanins and flavonols was observed in the berry skins in response to the decrease in nitrogen nutrition. High nitrogen supply also increased the average degree of polymerization of tannins, while the contents of flavan-3-ols and procyanidins in the seeds and skins of the berries were not affected. Global transcriptome (using RNA sequencing) and targeted (qPCR) analyses showed changes in the abundance of transcripts of genes related to the metabolism of flavonoids in response to nitrogen status. Nitrogen supply also influenced the transcript amounts of positive (MYB) and negative (Lateral Boundary Organ Domain) transcription factors controlling of the biosynthesis of flavonoids.

Acknowledgements: This work was funded by the Conseil Interprofessionnel du Vin de Bordeaux, the KBBE Innovine project and COST Action FA 1106.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Serge Delrot*, Aude Habran, Cornelis van Leeuwen, Eric Gomes, Flavia Guzzo, Ghislaine Hilbert, Mauro Commisso, Pierre Helwi, Stefano Negri

*UMR1287-EGFV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.