Wine growing regions global climate analysis

Abstract

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries. The indices are calculated using the WorldClim 30 sec arc (1 km) resolution database, updated for the period 2000-2014 using CRU3.2 database. The spatial limits of each region are given by the Vineyard Geodatabase, an electronic map elaborated from various sources (Atlases, wine region maps, land cover database…).

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Benjamin BOIS (1), Catinca GAVRILESCU (1), Marco MORIONDO (2), Gregory V. JONES (3)

(1) Centre de Recherches de Climatologie, UMR Biogeosciences 6282 CNRS / Univ. Bourgogne-Franche-Comté, 6bd Gabriel 21000 Dijon. France
(2) CNR-IBIMET, via G. Caproni 8, 50145, Florence, Italy
(3) Department of Environmental Studies, Southern Oregon University, 97520,101A Taylor Hall, Ashland, OR, U.S.A.

Contact the author

Keywords

Climate, viticulture, vineyard geodatabase, WorldClim, Growing season temperature, temperature extremes

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Climatic zoning of the Ibero-American viticultural regions

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration