Wine growing regions global climate analysis

Abstract

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries. The indices are calculated using the WorldClim 30 sec arc (1 km) resolution database, updated for the period 2000-2014 using CRU3.2 database. The spatial limits of each region are given by the Vineyard Geodatabase, an electronic map elaborated from various sources (Atlases, wine region maps, land cover database…).

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Benjamin BOIS (1), Catinca GAVRILESCU (1), Marco MORIONDO (2), Gregory V. JONES (3)

(1) Centre de Recherches de Climatologie, UMR Biogeosciences 6282 CNRS / Univ. Bourgogne-Franche-Comté, 6bd Gabriel 21000 Dijon. France
(2) CNR-IBIMET, via G. Caproni 8, 50145, Florence, Italy
(3) Department of Environmental Studies, Southern Oregon University, 97520,101A Taylor Hall, Ashland, OR, U.S.A.

Contact the author

Keywords

Climate, viticulture, vineyard geodatabase, WorldClim, Growing season temperature, temperature extremes

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Future scenarios for viticultural climatic zoning in Europe

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

The impact of ethyl esters, monoterpenes and volatile thiols to the perception of tropical fruit aromas in white wines

Many varietal white wines have aroma qualities that incorporate various tropical fruit aromas. These tropical fruit aromas are found to be considered positive qualities of the wines with consumers having positive emotional responses [1].

Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

“Pinking” is a term used to define an abnormal pink coloration assumed by white wines in certain cases. Despite the are many hypotheses about the causes of this phenomenon, pinking still represents an issue for the wine industry. In the absence of reliable preventive strategies, wineries often rely on treatments such as charcoal fining, which is also negatively impacting wine aroma. This study aims at evaluating the potential of different fining agents based on animal or vegetal proteins to prevent wine pinking when applied at the level of must clarification. The work was carried out on Lugana wines, which is well-recognised as sensible to pinking problems. METHODS: Two experimental Lugana musts were obtained by applying a standard winemaking protocol and were then clarified with different commercial preparations based on vegetal proteins or casein, alone or in combination with PVPP. A control only using pectolytic enzyme was also prepared. Finings were carried out at 4°C for 16h, and the clear must (200 NTU) was then fermented in controlled conditions.

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.