OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Impact of press fractioning on Pinot noir and Pinot meunier grape juice and wine compositions and colour

Impact of press fractioning on Pinot noir and Pinot meunier grape juice and wine compositions and colour

Abstract

The separation of different grape juice press fractions is an important step in the production of sparkling base wines. A complete press cycle for this style of wine is a series of pressure increases (squeezes) resulting in variations in juice composition during the press cycle. After alcoholic fermentation, wines obtained from grape juices also exhibit strong differences for numerous characteristics. Nevertheless, there is no statistical study of the impact of the press cycle on grape juices and wine colour/composition. So, the aim of this study (vintage 2018) was to investigate the changes in composition and colour parameters of Pinot noir and Pinot meunier grapes juices, as well as their corresponding wines, during the pressing cycle.

The studied parameters were: L*a*b*, A420, pH, total acidity (TA), malic and tartaric acids, sugars, maturity index, YAN, NH4+, a-NH2, Ca++ and K+ for the 23 grape juices, and pH, TA, malic and tartaric acids, alcohol, a-NH2, Ca++ and K+ for the 23 base wines. Results were analysed by Pearson’s correlation test, ANOVA and PCA after normalization of the data.

For examples, the TA and the tartaric acid content of the musts statistically decreased by 35 % and 41 % respectively between the beginning and the end of the press cycle, whilst the pH increased by 0.4 unit. These changes were observed concomitantly with the increases of a* and b* values by 4 to 6 units and a significant decrease of the luminosity L*. These observations were still true for wines. Many Pearson’s correlation coefficients were higher than 0.85 and even higher than 0.95 for some of them. The different PCAs considering the colour parameters, the acidity parameters or all of the parameters measured showed a strong separation of the samples according to the different squeezes, for grape juices as well as for the wines. This was confirmed with the PCA considering the 23 grape juices, the 23 wines and all of the parameters measured both in juice and wines.

conclusion:

As a conclusion, this study brings a greater understanding of: 1) Pinot noir and Pinot meunier must composition and colour changes all along the press cycle, 2) differences between wines produced with these grape juice fractions, 3) correlation between grape juice and wine compositions. These results could be a good tool for winemakers to decide how to separate the grape juice fractions during the pressing cycle to produce different styles of wines with different sensory qualities and aging potential.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Richard Marchal

Faculté des Sciences de Reims BP1039 51687 Reims Cedex 02  

Contact the author

Keywords

Press fractioning, grape juice, sparkling base wine colour, ACP 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

Microbial metagenomics of vineyard soils and wine terroir

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

New acacia gums fractions: how their features affect the foamability of sparkling base wines?

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation