OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Strategies for sample preparation and data handling in GC-MS wine applications

Strategies for sample preparation and data handling in GC-MS wine applications


It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. 

Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling. 

Therefore, strategies to reduce the some of the data can already be applied at the chemical analysis stage without loss of information. 

Using GCMS as analysis tool, an experiment was designed to evaluate on one hand different sample preparation methods, and on the other hand data handling strategies for the results. Twenty-six commercial wines from three cultivars (Chenin Blanc, Chardonnay, Sauvignon Blanc) and two winemaking styles (with and without wood contact) were subjected to three types of sample preparation (liquid/liquid extraction with three solvents, SPE on two stationary phases, HS-SPME on four fibres) before injection into GCMS. The various chemistries and polarities of the extraction solvents and stationary phases used resulted in different types of compounds being extracted from the wines. 

The TIC data was exported as a continuous signal (the chromatogram itself), as integrated peaks identified by their RTs, and as a (RT_m/z, abundance) matrix. Each type of data was submitted to PCA to underscore any natural grouping in the data. OPLS-DA and S-plots were subsequently used to determine the signals associated to cultivar discrimination and style. The raw data was revisited, and MS spectra extracted for the signals of interest, leading to the identification of the drivers (ions/compounds) for cultivars and style. 

The strategies for sample preparation and data extraction were evaluated based on their feasibility and potential for data mining. Additionally, this type of work can be of further use as a basis for developing screening or targeted analyses, based on the groups of analytes extracted during various sample preparation procedures.


Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article


Astrid Buica, Cody Williams, Mpho Mafata, Andrei Medvedovici, Costel Sarbu, Lucky Mokwen 

Institute for Grape and Wine Sciences, Stellenbosch University, South Africa 
Department of Viticulture and Oenology, Stellenbosch University, South Africa 
Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Romania 
Department of Analytical Chemistry, Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, Cluj-Napoca, Romania 
Central Analytical Facility, Stellenbosch University, South Africa 

Contact the author


data mining, GCMS, sample preparation, untargeted analysis


IVES Conference Series | OENO IVAS 2019


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.