terclim by ICS banner
IVES 9 IVES Conference Series 9 Temperature-based phenology modelling for the grapevine 

Temperature-based phenology modelling for the grapevine 

Abstract

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios. The following aspects were evaluated: (1) importance of defining modelling objectives, (2) an understanding of database characteristics and how this may influence modelling outcomes, (3) the accuracy of models compared to observations, (4) the influence of the quality of phenological observations on model development and (5) the importance of calibrating a maximum the varieties for specific models. The challenges of the different modelling approaches and strengths and limitations of the outputs are discussed, particularly in the context of climate change projections.
Combining the results of these separate approaches highlights the opportunities and limitations of different modelling solutions and how different modelling approaches are needed to understand how temperature influences grapevine development depending on objectives, and that tools are available to help us better evaluate the potential effects of climate change on grapevine development.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amber K. Parker1*, Mike C.T. Trought1,2, Laure de Rességuier3, Cornelis van Leeuwen3, Elena Moltchanova4, Hervé Quénol5, Andrew Sturman6, Inaki Garcia de Cortazar Atauri7

1 Department of Wine, Food and Molecular Biosciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
2The New Zealand Institute for Plant & Food Research Limited (PFR), Marlborough Research Centre, New Zealand
3 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
4School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
5 LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
6 Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
7Agroclim, INRAE, Avignon, France

Contact the author*

Keywords

grapevine, phenology, temperature, climate change, modelling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

French wine sector facing climate change (part. 1): A national strategy built on a foresight and participatory approach

A foresight study was carried out by a group of experts from INRAE, universities, INAO and FranceAgriMer from 2014 as part of the multidisciplinary “laccave” project intended to anticipate climate change in the French wine industry. The initial objective was to initiate an interdisciplinary dialogue between researchers and to feed their questions in a more systemic way. The scenario development method made it possible to build possible futures for the wine sector in the face of climate change. It began by drafting four adaptation strategies, combining different possible intensities of innovation and relocation of the vineyard.

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Regionality, frequently called terroir, is often used to market wines from different locations. Savatiano (Vitis Vinifera L.), is the dominant indigenous variety of the Mesogeia – Attiki region, reaching a percentage of 70% of the total vine cultivation, and being the most widely planted variety in Greece. In this context, this research focuses on the evaluation of the impact of different terroirs within the PGI Attiki zone on the aromatic profile of Savatiano.

Water and physiological response to early leaf removal of cv. Verdejo in rainfed conditions, at different times of the day, in the D.O. Rueda (Spain)

Aim: Early leaf removal, generally applied before flowering, is mostly conceived as a technique to control grape yield and improve the health of grapes and focused on the final objective of increasing wine quality.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].