terclim by ICS banner
IVES 9 IVES Conference Series 9 Temperature-based phenology modelling for the grapevine 

Temperature-based phenology modelling for the grapevine 

Abstract

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios. The following aspects were evaluated: (1) importance of defining modelling objectives, (2) an understanding of database characteristics and how this may influence modelling outcomes, (3) the accuracy of models compared to observations, (4) the influence of the quality of phenological observations on model development and (5) the importance of calibrating a maximum the varieties for specific models. The challenges of the different modelling approaches and strengths and limitations of the outputs are discussed, particularly in the context of climate change projections.
Combining the results of these separate approaches highlights the opportunities and limitations of different modelling solutions and how different modelling approaches are needed to understand how temperature influences grapevine development depending on objectives, and that tools are available to help us better evaluate the potential effects of climate change on grapevine development.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amber K. Parker1*, Mike C.T. Trought1,2, Laure de Rességuier3, Cornelis van Leeuwen3, Elena Moltchanova4, Hervé Quénol5, Andrew Sturman6, Inaki Garcia de Cortazar Atauri7

1 Department of Wine, Food and Molecular Biosciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
2The New Zealand Institute for Plant & Food Research Limited (PFR), Marlborough Research Centre, New Zealand
3 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
4School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
5 LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
6 Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
7Agroclim, INRAE, Avignon, France

Contact the author*

Keywords

grapevine, phenology, temperature, climate change, modelling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018)

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.

Effects of auxin treatment on compositional and molecular ripening dynamics in grape varieties of northern Italy

Context and purpose of the study. The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.