terclim by ICS banner
IVES 9 IVES Conference Series 9 Temperature-based phenology modelling for the grapevine 

Temperature-based phenology modelling for the grapevine 

Abstract

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios. The following aspects were evaluated: (1) importance of defining modelling objectives, (2) an understanding of database characteristics and how this may influence modelling outcomes, (3) the accuracy of models compared to observations, (4) the influence of the quality of phenological observations on model development and (5) the importance of calibrating a maximum the varieties for specific models. The challenges of the different modelling approaches and strengths and limitations of the outputs are discussed, particularly in the context of climate change projections.
Combining the results of these separate approaches highlights the opportunities and limitations of different modelling solutions and how different modelling approaches are needed to understand how temperature influences grapevine development depending on objectives, and that tools are available to help us better evaluate the potential effects of climate change on grapevine development.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amber K. Parker1*, Mike C.T. Trought1,2, Laure de Rességuier3, Cornelis van Leeuwen3, Elena Moltchanova4, Hervé Quénol5, Andrew Sturman6, Inaki Garcia de Cortazar Atauri7

1 Department of Wine, Food and Molecular Biosciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
2The New Zealand Institute for Plant & Food Research Limited (PFR), Marlborough Research Centre, New Zealand
3 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
4School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
5 LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
6 Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
7Agroclim, INRAE, Avignon, France

Contact the author*

Keywords

grapevine, phenology, temperature, climate change, modelling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

Organic Oregon: an emerging experience in terroir tourism

Emerging from anthropology, climatology, ecology, gastronomy, geography and wine tourism, terroir tourism has been recently recognized to have potential for developing rural agriculture tourism

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.