terclim by ICS banner
IVES 9 IVES Conference Series 9 Temperature-based phenology modelling for the grapevine 

Temperature-based phenology modelling for the grapevine 

Abstract

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios. The following aspects were evaluated: (1) importance of defining modelling objectives, (2) an understanding of database characteristics and how this may influence modelling outcomes, (3) the accuracy of models compared to observations, (4) the influence of the quality of phenological observations on model development and (5) the importance of calibrating a maximum the varieties for specific models. The challenges of the different modelling approaches and strengths and limitations of the outputs are discussed, particularly in the context of climate change projections.
Combining the results of these separate approaches highlights the opportunities and limitations of different modelling solutions and how different modelling approaches are needed to understand how temperature influences grapevine development depending on objectives, and that tools are available to help us better evaluate the potential effects of climate change on grapevine development.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amber K. Parker1*, Mike C.T. Trought1,2, Laure de Rességuier3, Cornelis van Leeuwen3, Elena Moltchanova4, Hervé Quénol5, Andrew Sturman6, Inaki Garcia de Cortazar Atauri7

1 Department of Wine, Food and Molecular Biosciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
2The New Zealand Institute for Plant & Food Research Limited (PFR), Marlborough Research Centre, New Zealand
3 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
4School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
5 LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
6 Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
7Agroclim, INRAE, Avignon, France

Contact the author*

Keywords

grapevine, phenology, temperature, climate change, modelling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

GrapeBreed4IPM: developing sustainable solutions for viticulture through multi-actor innovation targeting breeding for integrated pest management

According to the World Economic Forum and the European Union’s Biodiversity Strategy for 2030, the loss of biodiversity and the collapse of ecosystems are major threats facing humanity in the future.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.