terclim by ICS banner
IVES 9 IVES Conference Series 9 Temperature-based phenology modelling for the grapevine 

Temperature-based phenology modelling for the grapevine 

Abstract

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios. The following aspects were evaluated: (1) importance of defining modelling objectives, (2) an understanding of database characteristics and how this may influence modelling outcomes, (3) the accuracy of models compared to observations, (4) the influence of the quality of phenological observations on model development and (5) the importance of calibrating a maximum the varieties for specific models. The challenges of the different modelling approaches and strengths and limitations of the outputs are discussed, particularly in the context of climate change projections.
Combining the results of these separate approaches highlights the opportunities and limitations of different modelling solutions and how different modelling approaches are needed to understand how temperature influences grapevine development depending on objectives, and that tools are available to help us better evaluate the potential effects of climate change on grapevine development.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amber K. Parker1*, Mike C.T. Trought1,2, Laure de Rességuier3, Cornelis van Leeuwen3, Elena Moltchanova4, Hervé Quénol5, Andrew Sturman6, Inaki Garcia de Cortazar Atauri7

1 Department of Wine, Food and Molecular Biosciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
2The New Zealand Institute for Plant & Food Research Limited (PFR), Marlborough Research Centre, New Zealand
3 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
4School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
5 LETG-Rennes COSTEL, UMR 6554 CNRS, Université Rennes 2, Rennes, France
6 Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
7Agroclim, INRAE, Avignon, France

Contact the author*

Keywords

grapevine, phenology, temperature, climate change, modelling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).

la caratterizzazione dell’areale viticolo “terre alte di brisighella”: aspetti metodologici e primi risultati

La zonazione viticola rappresenta un importante strumento di indagine per valutare e interpretare le potenzialità produttive e qualitative di un territorio. Con l’obiettivo di studiare come l’ambiente influisca sulla qualità dell’uva nell’areale di Brisighella, sono stati monitorati, nelle annate 2007, 2008 e 2009, 14 vigneti per la varietà Albana e 38 per la varietà Sangiovese, rappresentativi di una area vitata di circa 1000 ha.

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.