terclim by ICS banner
IVES 9 IVES Conference Series 9 Fruit set rate clonal variation explains yield differences at harvest in Malbec

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Abstract

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023). After combining image-based systems to assist in the phenotyping with univariate and multivariate approaches for statistical analyses, we identified a wide range of clonal variation. For example, fruit set rate varied from 13.1 to 65.8% (avg. 38.4%) and from 9.8 to 50.0% (avg. 32.1%) in 2022 and 2023, respectively. A hierarchical clustering on principal components analysis identified three clonal groups of phenotypic similarity, consistent between seasons. Interestingly, two of these groups presented a similar number of flowers per inflorescence but markedly different fruit set rates. Consequently, clones from these two groups produced a significantly different number of berries per cluster. The in-depth analysis of clones assigned to these contrasting groups, for traits like pollen viability and flower morphology, allowed exploring the potential causes of the observed differences. We found that fruit set rate variation has multiple causes in Malbec, associated to anomalous flower development and functionality, which could ultimately impact on clonal yield differences at harvest.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luciano Calderón1*, Javier Tello2*, Silvina van Houten1, Claudio Muñoz1,4, Tomas Oroño1, Laura Bree3, Daniel Bergamin3, Cristóbal Sola3, Natalia Carrillo4, José Miguel Martinez-Zapater2, Diego Lijavetzky1

1 Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo). Mendoza, Argentina
2 Instituto de las Ciencias de la Vid y del Vino (ICVV; CSIC, UR, Gobierno de La Rioja). Logroño, Spain
3 Vivero Mercier Argentina. Mendoza, Argentina
4 Facultad de Ciencias Agrarias (UNCuyo). Mendoza, Argentina

Contact the author*

Keywords

intra-varietal variation, reproductive performance, image-assisted phenotyping, flower development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The ampelographic collection – glorious past, challenging present, expectant future

During the more than 190 years since the founding of the first ampelographic collection, the creation of a series of collections is attested on the territory of the Republic of Moldova, each operating in different historical periods and socio-economic conditions,

Etude des effets millésime, situation et sol à partir d’un observatoire du Gamay en beaujolais

Des expérimentations sur Gamay ont été réalisées en Beaujolais de 2000 à 2006 sur 10 parcelles d’AOC différentes. De nombreuses mesures ont été effectuées à différents stades (vigne, baies récoltées, vinification et bouteille avec ou sans vieillissement). Ces mesures sont également de natures différentes (données phénologiques, analytiques, dégustation). Des analyses de la composition des sols sont également disponibles.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.