terclim by ICS banner
IVES 9 IVES Conference Series 9 Fruit set rate clonal variation explains yield differences at harvest in Malbec

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Abstract

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023). After combining image-based systems to assist in the phenotyping with univariate and multivariate approaches for statistical analyses, we identified a wide range of clonal variation. For example, fruit set rate varied from 13.1 to 65.8% (avg. 38.4%) and from 9.8 to 50.0% (avg. 32.1%) in 2022 and 2023, respectively. A hierarchical clustering on principal components analysis identified three clonal groups of phenotypic similarity, consistent between seasons. Interestingly, two of these groups presented a similar number of flowers per inflorescence but markedly different fruit set rates. Consequently, clones from these two groups produced a significantly different number of berries per cluster. The in-depth analysis of clones assigned to these contrasting groups, for traits like pollen viability and flower morphology, allowed exploring the potential causes of the observed differences. We found that fruit set rate variation has multiple causes in Malbec, associated to anomalous flower development and functionality, which could ultimately impact on clonal yield differences at harvest.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luciano Calderón1*, Javier Tello2*, Silvina van Houten1, Claudio Muñoz1,4, Tomas Oroño1, Laura Bree3, Daniel Bergamin3, Cristóbal Sola3, Natalia Carrillo4, José Miguel Martinez-Zapater2, Diego Lijavetzky1

1 Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo). Mendoza, Argentina
2 Instituto de las Ciencias de la Vid y del Vino (ICVV; CSIC, UR, Gobierno de La Rioja). Logroño, Spain
3 Vivero Mercier Argentina. Mendoza, Argentina
4 Facultad de Ciencias Agrarias (UNCuyo). Mendoza, Argentina

Contact the author*

Keywords

intra-varietal variation, reproductive performance, image-assisted phenotyping, flower development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un modèle du microclimat intégrant température, relief, éclairement et pluviométrie a été conçu.

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.

VITOUR – The European World Heritage Vineyards

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.