terclim by ICS banner
IVES 9 IVES Conference Series 9 Fruit set rate clonal variation explains yield differences at harvest in Malbec

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Abstract

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023). After combining image-based systems to assist in the phenotyping with univariate and multivariate approaches for statistical analyses, we identified a wide range of clonal variation. For example, fruit set rate varied from 13.1 to 65.8% (avg. 38.4%) and from 9.8 to 50.0% (avg. 32.1%) in 2022 and 2023, respectively. A hierarchical clustering on principal components analysis identified three clonal groups of phenotypic similarity, consistent between seasons. Interestingly, two of these groups presented a similar number of flowers per inflorescence but markedly different fruit set rates. Consequently, clones from these two groups produced a significantly different number of berries per cluster. The in-depth analysis of clones assigned to these contrasting groups, for traits like pollen viability and flower morphology, allowed exploring the potential causes of the observed differences. We found that fruit set rate variation has multiple causes in Malbec, associated to anomalous flower development and functionality, which could ultimately impact on clonal yield differences at harvest.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luciano Calderón1*, Javier Tello2*, Silvina van Houten1, Claudio Muñoz1,4, Tomas Oroño1, Laura Bree3, Daniel Bergamin3, Cristóbal Sola3, Natalia Carrillo4, José Miguel Martinez-Zapater2, Diego Lijavetzky1

1 Instituto de Biología Agrícola de Mendoza (CONICET-UNCuyo). Mendoza, Argentina
2 Instituto de las Ciencias de la Vid y del Vino (ICVV; CSIC, UR, Gobierno de La Rioja). Logroño, Spain
3 Vivero Mercier Argentina. Mendoza, Argentina
4 Facultad de Ciencias Agrarias (UNCuyo). Mendoza, Argentina

Contact the author*

Keywords

intra-varietal variation, reproductive performance, image-assisted phenotyping, flower development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Dans la région des “Vinhos Verdes” les études sur les systèmes de conduite de la vigne sont très importantes et beaucoup de travaux ont été faits pendant les dernières années. Cet essai

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].