terclim by ICS banner
IVES 9 IVES Conference Series 9 Functional characterisation of genetic elements regulating bunch morphology in grapevine

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Abstract

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.
This study aims to identify and characterise genetic elements regulating grapevine bunch formation, while also providing valuable understanding of molecular and cellular regulation of this important process. This will be done by carrying out three planned objectives, summarised as: identification of candidate genes, overexpression of candidates in model plants, and genetically engineering grapevine for selected genes.
Ten candidate genes were identified based on their presence in loci associated with bunch architecture traits, expression patterns during flower development, and sequence homology with genes regulating plant architecture in other species. These genes were cloned into plant expression vectors that were used to transform tomato and Arabidopsis thaliana plants. The research anticipates observing phenotypic evidence in the transformed model plants, which may suggest a potential role in grapevine bunch architecture regulation. The identification and characterisation of genes controlling bunch morphology offer promising avenues for advancing grapevine breeding and cultivation practices, benefiting the viticulture industry and consumers alike, by improving growth, health, and fruit production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Kerry-Ann Jordaan1*, Manuela Campa1, Luca Nerva2, Johan Burger1, Justin Lashbrooke1

1Department of Genetics, Stellenbosch University, P/Bag X1, Matieland, 7602, South Africa
2Research Centre for Viticulture and Oenology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015 Conegliano (TV), Italy

Contact the author*

Keywords

bunch morphology, overexpression, grapevine, compactness, transformation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Shift of Nitrogen Resources by biotic interaction in grapevine

Grape phylloxera (Daktulosphaira vitifoliae Fitch), a monophagous pest of the grapevine, induces nodosities on the roots through its sap-sucking activity.

Estudio de la fertilidad de los suelos para la zonificación vitícola de la D.O. MONTILLA-MORILES

La D.O. Montilla-Moriles, situada en el sur de la provincia de Córdoba, corresponde a una de las zonas de mayor interés dentro de la vitivinicultura andaluza. Las formaciones de suelos

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

« Wine routes »: a collective brand to build a wine reputation on the basis of terroir and landscapes

Le marché international du vin est désormais tourné vers la qualité et les vignobles de vin de masse se transforment pour construire la qualité et la réputation de leurs produits. Cette construction s’appuie notamment sur la valorisation de ressources territoriales de nature physique (terroir, pacage, écosystème) et humaine (savoir-faire, culture, patrimoine…). Les « Routes des Vins » sont des exemples concrets de ces processus de «territorialisation», combinant ces ressources territoriales pour communiquer sur l’ancrage géographique et la spécificité des vins. Les «Routes des Vins» émergentes, observées dans les régions vitivinicoles en transition vers la qualité, en Languedoc Roussillon, à Mendoza (Argentine) et au Western Cape (Afrique du Sud), participent souvent à la valorisation des terroirs, en organisant un itinéraire sur le territoire associé, en faisant découvrir les vins «de qualité», les paysages, les pratiques et le savoir-faire associés à leur élaboration.