terclim by ICS banner
IVES 9 IVES Conference Series 9 Functional characterisation of genetic elements regulating bunch morphology in grapevine

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Abstract

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.
This study aims to identify and characterise genetic elements regulating grapevine bunch formation, while also providing valuable understanding of molecular and cellular regulation of this important process. This will be done by carrying out three planned objectives, summarised as: identification of candidate genes, overexpression of candidates in model plants, and genetically engineering grapevine for selected genes.
Ten candidate genes were identified based on their presence in loci associated with bunch architecture traits, expression patterns during flower development, and sequence homology with genes regulating plant architecture in other species. These genes were cloned into plant expression vectors that were used to transform tomato and Arabidopsis thaliana plants. The research anticipates observing phenotypic evidence in the transformed model plants, which may suggest a potential role in grapevine bunch architecture regulation. The identification and characterisation of genes controlling bunch morphology offer promising avenues for advancing grapevine breeding and cultivation practices, benefiting the viticulture industry and consumers alike, by improving growth, health, and fruit production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Kerry-Ann Jordaan1*, Manuela Campa1, Luca Nerva2, Johan Burger1, Justin Lashbrooke1

1Department of Genetics, Stellenbosch University, P/Bag X1, Matieland, 7602, South Africa
2Research Centre for Viticulture and Oenology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015 Conegliano (TV), Italy

Contact the author*

Keywords

bunch morphology, overexpression, grapevine, compactness, transformation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Gambellara zoning: climate and soil effect on the aromatic fresh and dried grape composition and wine aroma

La région de production de la Gambellara et Recioto di Gambellara DOC (variété Garganega), tout en n’intéressant qu’une surface limitée, présente une certaine variabilité de milieu due à la morphologie du territoire (colline et plaine), à l’état actuel des sols et aux variations climatiques entre les différents sites. Pour les années 2001, 2002

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages.

Guard cells and stomatal movement reveal early molecular interaction between grapevine cells and esca-associated pathogens

Esca is one of the major grapevine trunk diseases that cause vineyards decline and important economic losses in vineyards.

Grape texture characteristics are linked to one major qtl

Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes.