terclim by ICS banner
IVES 9 IVES Conference Series 9 Functional characterisation of genetic elements regulating bunch morphology in grapevine

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Abstract

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.
This study aims to identify and characterise genetic elements regulating grapevine bunch formation, while also providing valuable understanding of molecular and cellular regulation of this important process. This will be done by carrying out three planned objectives, summarised as: identification of candidate genes, overexpression of candidates in model plants, and genetically engineering grapevine for selected genes.
Ten candidate genes were identified based on their presence in loci associated with bunch architecture traits, expression patterns during flower development, and sequence homology with genes regulating plant architecture in other species. These genes were cloned into plant expression vectors that were used to transform tomato and Arabidopsis thaliana plants. The research anticipates observing phenotypic evidence in the transformed model plants, which may suggest a potential role in grapevine bunch architecture regulation. The identification and characterisation of genes controlling bunch morphology offer promising avenues for advancing grapevine breeding and cultivation practices, benefiting the viticulture industry and consumers alike, by improving growth, health, and fruit production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Kerry-Ann Jordaan1*, Manuela Campa1, Luca Nerva2, Johan Burger1, Justin Lashbrooke1

1Department of Genetics, Stellenbosch University, P/Bag X1, Matieland, 7602, South Africa
2Research Centre for Viticulture and Oenology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015 Conegliano (TV), Italy

Contact the author*

Keywords

bunch morphology, overexpression, grapevine, compactness, transformation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.