terclim by ICS banner
IVES 9 IVES Conference Series 9 Functional characterisation of genetic elements regulating bunch morphology in grapevine

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Abstract

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.
This study aims to identify and characterise genetic elements regulating grapevine bunch formation, while also providing valuable understanding of molecular and cellular regulation of this important process. This will be done by carrying out three planned objectives, summarised as: identification of candidate genes, overexpression of candidates in model plants, and genetically engineering grapevine for selected genes.
Ten candidate genes were identified based on their presence in loci associated with bunch architecture traits, expression patterns during flower development, and sequence homology with genes regulating plant architecture in other species. These genes were cloned into plant expression vectors that were used to transform tomato and Arabidopsis thaliana plants. The research anticipates observing phenotypic evidence in the transformed model plants, which may suggest a potential role in grapevine bunch architecture regulation. The identification and characterisation of genes controlling bunch morphology offer promising avenues for advancing grapevine breeding and cultivation practices, benefiting the viticulture industry and consumers alike, by improving growth, health, and fruit production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Kerry-Ann Jordaan1*, Manuela Campa1, Luca Nerva2, Johan Burger1, Justin Lashbrooke1

1Department of Genetics, Stellenbosch University, P/Bag X1, Matieland, 7602, South Africa
2Research Centre for Viticulture and Oenology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile, 31015 Conegliano (TV), Italy

Contact the author*

Keywords

bunch morphology, overexpression, grapevine, compactness, transformation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

La zonazione della valle d’Illasi (Verona)

In the bottom of Val d’Illasi (Verona province), one of the major valleys which passes through the Lessini mountains, viticulture is widely extended. In the territory belonging to Illasi and Tregnago villages, which includes ca. 1100 ha of vineyards, devoted to produce Soave and Valpolicella DOC wines, an experimental survey was conducted on a network of twenty five reference vineyards.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

Fingerprinting as approach to unlock black box of taste

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter.