terclim by ICS banner
IVES 9 IVES Conference Series 9 Comparative QTL mapping of phenology traits in three cross populations of grapevine

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Abstract

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’. High-density parental and integrated linkage maps were developed by using genotypic information, obtained through hybridization to the Illumina Vitis18KSNP chip, of DNA from 144, 129 and 139 individuals respectively. Each progeny was then evaluated in the field over four seasons. The phenological traits budburst, flowering, veraison as well as technological ripening were assessed, and correlations across years and traits were estimated. A summary of all mapped QTLs in the different years in each population is provided and QTLs reproducible across years and populations as well as potential underlying candidates are discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Martina Marini1, Laura Costantini2, Silvia Pettenuzzo2,3,4, Silvia Lorenzi2 ,Tahir Mujtaba1, Riccardo Mora1, Ron Shmuleviz1,Giovanni Battista Tornielli1,5, Giada Bolognesi1, Maria Stella Grando3, Diana Bellin1

1 Department of Biotechnology, University of Verona, Italy
2Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
3Center Agriculture Food and Environment (C3A), University of Trento, Italy
4Department of Chemical Sciences, University of Padova, Italy
5Current address: Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Italy

Contact the author*

Keywords

climate change, phenology, cross populations, QTL mapping, candidate genes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Alternative methods to evaluate the pinking susceptibility of white wines: derivative spectroscopy and ciel*a*b* colour analysis

Pinking describes the appearance of a salmon-red blush in white bottled wines produced exclusively from white grape varieties. It is understood as an undesirable chromatic phenomenon by both wine consumers and the industry. Nowadays, there are no treatments to fully reverse pinking once it occurs. Partial reversion has been shown after exposure of pinked wine to ultraviolet (UV) light.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.