terclim by ICS banner
IVES 9 IVES Conference Series 9 Comparative QTL mapping of phenology traits in three cross populations of grapevine

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Abstract

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’. High-density parental and integrated linkage maps were developed by using genotypic information, obtained through hybridization to the Illumina Vitis18KSNP chip, of DNA from 144, 129 and 139 individuals respectively. Each progeny was then evaluated in the field over four seasons. The phenological traits budburst, flowering, veraison as well as technological ripening were assessed, and correlations across years and traits were estimated. A summary of all mapped QTLs in the different years in each population is provided and QTLs reproducible across years and populations as well as potential underlying candidates are discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Martina Marini1, Laura Costantini2, Silvia Pettenuzzo2,3,4, Silvia Lorenzi2 ,Tahir Mujtaba1, Riccardo Mora1, Ron Shmuleviz1,Giovanni Battista Tornielli1,5, Giada Bolognesi1, Maria Stella Grando3, Diana Bellin1

1 Department of Biotechnology, University of Verona, Italy
2Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
3Center Agriculture Food and Environment (C3A), University of Trento, Italy
4Department of Chemical Sciences, University of Padova, Italy
5Current address: Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Italy

Contact the author*

Keywords

climate change, phenology, cross populations, QTL mapping, candidate genes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

Temperature effects on the biosynthesis of aroma compounds in glera grapes

This paper describes the first year results of a study that investigated the effects of altitude and related temperature parameters on the biosynthesis of aromas in the Italian cultivar Glera.