Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Southern Oregon Ava landscape and climate for wine production

Southern Oregon Ava landscape and climate for wine production

Abstract

The Southern Oregon American Viticultural Area (AVA) consists of the Applegate Valley, Rogue Valley, Umpqua Valley, Elkton Oregon, and Red Hills of Douglas County sub-AVAs (Figure 1) that are some of the many winegrape producing regions found within the intermountain valleys along the west coast of the United States. The landscape of the Southern Oregon AVA is extremely diverse, coming from the joining of three mountain ranges of varying ages and structure: the Klamath and Siskiyou Mountains to the southwest to southeast, the Coastal Range to the west, and the Cascades to the east and north. The Klamath Mountains extend through the south and southwestern portion of the AVA and consist of complex folded and faulted igneous and metamorphic rocks that are the oldest in the region. The Cascade Mountains to the east consist of the younger High Cascades and the older, more deeply eroded Western Cascades that make up the eastern boundary of the AVA. The region is protected from the ocean largely by the Coastal Mountains, which are composed of mostly oceanic sedimentary rocks and volcanic islands that were accreted to the landscape over the last 50 million years. The Rogue Valley AVA is drained mainly by the Rogue River and its major tributaries; the Applegate River, the Illinois River, and Bear Creek, while the Umpqua Valley AVA is drained by hundreds of smaller tributaries of the North and South Umpqua Rivers.

The agricultural landscape of the Southern Oregon AVA is mostly comprised of valley lowlands with some isolated hills, stream terraces or benches, and footslopes of alluvial fans scattered by hilltops and ridges. Vineyards in the region are found on flat to very steep slopes (up to 40% or more) that are distributed along isolated hills, stream terraces or benches, and at the foot of alluvial fans. Elevations of potential and existing vineyard sites range from approximately 60-90 m in the northwestern portion of the Umpqua Valley AVA to 800 m and possibly higher in the Bear Creek Valley of the Rogue Valley AVA. Most current vineyards are planted to ~180 m in the Umpqua Valley AVA and ~450 m in the Rogue Valley AVA.

From the diverse geology of the region comes a widely varying mix of metamorphic, sedimentary, and volcanic derived soils. The lower elevations of the valleys are mostly deep alluvial material or heavy clays while the hillside and bench locations have mixed alluvial, silt, or clay structures. Complex faulting, especially in the western portion of the Rogue Valley AVA and southern portion of the Umpqua Valley AVA, can produce large variations in soil types over areas the size of a vineyard. Drainage and moisture-holding capacity vary greatly by soil type, and while most soils in the region do retain water into the growing season, available water for irrigation during mid to late summer growth is generally needed. Soil fertility is generally sufficient for winegrape production but varies greatly over the region with issues generally related to either imbalances of nitrogen, calcium, potassium, phosphorous, magnesium, boron, or zinc. Soil pH also varies from region to region (roughly from 4.5 to 7.0) and is mostly due to differences in climate and parent rock material. In general, the soils in the northern and western portions of the Southern Oregon AVA are slightly more acidic than those of the south as a result of more rainfall and greater leaching potential.

From a climate perspective the Southern Oregon AVA offers the most diverse growing conditions in Oregon and arguably in the United States. Heat accumulation varies from cool climate suitability in the northern Umpqua Valley and Illinois Valley (~2100-2400 GDD, F° units) to intermediate values in the central Umpqua Valley and Applegate Valley (~2400-2700 GDD) to warm climate suitability in the Bear Creek and Rogue River region (~2700-3000 GDD) (Figure 2). The Umpqua Valley AVA in general has longer frost-free periods (~180-220 days) and milder growing seasons, experiencing precipitation values that average 750 to 1500 mm from south to north. The Rogue Valley AVA has the higher elevations, that along with their general north-south tending valleys, and their proximity to the Pacific Ocean and intervening topographical barriers create a climate transect of wetter and cooler conditions in the western parts of the region to the warmer and drier eastern areas. Precipitation varies from 300-600 mm in most of the vineyard areas in the Rogue, declining in amount from west to east (all of the Southern Oregon AVA experiences less than 15 percent of the total precipitation occurring during the growing season of April through October). The frost-free growing season is shorter in the Rogue Valley AVA (~145-185 days) due to higher elevations that bring later and earlier frost potential in the spring and fall, respectively.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Gregory V. Jones (1)

(1) Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, USA

Contact the author

Keywords

climate, terroir, Southern Oregon, Rogue Valley, Applegate Valley, Umpqua Valley

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The evolution of italian vine nursery production over the past 30 years

Italy has a long history of viticulture and has become one of the world’s leading producers of vine propagation material. The Italian vine nursery industry is today highly qualified and has become highly competitive on a global scale. The quality of the material is guaranteed by compliance with European Union regulations, which have been in force since the second half of the 20th century and have subsequently been supplemented and updated.

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Untangle berry shrivel environmental risk factors and quantify symptoms with AI – GeomAbs meets BAISIQ

Berry Shrivel (BS, Traubenwelke) is a sugar accumulation disorder of grapevine of unknown causes, having a great negative impact on grape quality and incalculable risks for yield losses, and for which no reliable curative practices are available.

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.