terclim by ICS banner
IVES 9 IVES Conference Series 9 The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

Abstract

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition. Results showed that the harvest date of two adjacent vineyards (within 200 m) could vary up to two weeks. High vineyard pH (> 8.5) could accelerate grape ripening rate, increase grape anthocyanin and flavonol concentration while decreasing C6/C9-related aromas. Vineyards with moderate nutrition were beneficial for accumulating norisoprenoids in grapes. Differently expressed genes involved in the pathways of secondary metabolites were selected through transcriptome analysis, revealing the regulation of grape flavor compounds influenced by vineyard soil heterogeneity. This work provides molecular and chemical mechanisms underlying single-vineyard wines and a theoretical basis for targeted wine production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Haocheng Lu1,2, Mengbo Tian1,2, Ning Shi1,2, Jun Wang1,2*

1 Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
2 Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

Contact the author*

Keywords

Single vineyard wine, soil, phenolics, aromas, transcriptome

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Characterization of tannins and prevention of light-struck taste: the enofotoshield project

Hydrolysable tannins resulted effective against the formation of light-struck taste (LST) in model wine [1]. The first activity of Enofotoshield project is to evaluate the effectiveness of tannins

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied.

Moderated consumption of alcoholic beverages and cancer risk

One on three cases of cancer is associated with lifestyle and nutritional patterns, and the excessive intake of alcoholic beverages is a well established risk factor. Moderate drinking has been associated with reduced or increased risk of various types of cancer, but the clinical relevance of the risk rates has not been evaluated in ad hoc prospective investigations.

The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

Anthocyanins are responsible for the red wine color and their ability to condense with tannins is considered as a contributor in astringency reduction. However, recent studies showed the possibility of anthocyanins to influence directly the in-mouth perception of wines.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.