terclim by ICS banner
IVES 9 IVES Conference Series 9 The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

Abstract

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition. Results showed that the harvest date of two adjacent vineyards (within 200 m) could vary up to two weeks. High vineyard pH (> 8.5) could accelerate grape ripening rate, increase grape anthocyanin and flavonol concentration while decreasing C6/C9-related aromas. Vineyards with moderate nutrition were beneficial for accumulating norisoprenoids in grapes. Differently expressed genes involved in the pathways of secondary metabolites were selected through transcriptome analysis, revealing the regulation of grape flavor compounds influenced by vineyard soil heterogeneity. This work provides molecular and chemical mechanisms underlying single-vineyard wines and a theoretical basis for targeted wine production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Haocheng Lu1,2, Mengbo Tian1,2, Ning Shi1,2, Jun Wang1,2*

1 Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
2 Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

Contact the author*

Keywords

Single vineyard wine, soil, phenolics, aromas, transcriptome

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Implications of grapevine row orientation in South Africa

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation

A great variability in the amount of polysaccharides recovered at the end of fermentations carried out by pure cultures of 89 non-Saccharomyces yeasts was observed. The utilization of the best polysaccharides producers in mixed cultures with S. cerevisiae resulted in considerable increases in the final concentration of polysaccharides and showed a strain dependent effect on glycerol production as compared to pure culture of S. cerevisiae.

Photo-oxidative stress and light-struck defect in Corvina rosé wines: influence of yeast nutritional strategies

Light exposure is one of the major factors affecting the sensory quality of rosé wines and resulting in the light-struck fault.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).