terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of canopy management on thiol precursors in white grapes: a six-year field study

Impact of canopy management on thiol precursors in white grapes: a six-year field study

Abstract

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.

Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10). Decreasing earliness modulated the impact of LR on yield (–12%) and P-3MH concentration (–6%). Compensating for suppressed leaf area by increasing the trimming height slightly enhanced grape ripening (+1% total sugars; –3% titratable acidity), slightly improved the overall quality of the wine (color intensity, volume), while having no impact on must P-3MH concentration or on wine bouquet.

Observing the long-term impact of each LR treatment separately provided insights into the physiological mechanisms influencing fruit development and aroma formation. This trial is part of a larger project on canopy management and its impact on grape composition in temperate Swiss climatic conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Thibaut Verdenal1*, Vivian Zufferey1, Ágnes Dienes-Nagy2, Gilles Bourdin2, Jean-Laurent Spring1

1 Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
2 Agroscope, route de Duillier 60, case postale 1012, 1260 Nyon 1, Switzerland

Contact the author*

Keywords

leaf removal, canopy height, 3-mercaptohexanol, grapevine, wine aroma

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

The wine country, between landscape and promoting tool. The example of Chinon and Saint-Nicolas-de-Bourgueil vineyards (France)

When talking about wine, terroirs are never too far. The National Institute of Apellation d’Origine (INAO) defines it as a system inside of which interact a group of human factors, an agricultural production and a physical environment.

One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

The aim of this study was to evaluate how the different tank materials could affect the chemical and sensory characteristics of a Sangiovese red wine during one-year aging.

Yield formation and grape composition: more than meets the eye 

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year.