terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of canopy management on thiol precursors in white grapes: a six-year field study

Impact of canopy management on thiol precursors in white grapes: a six-year field study

Abstract

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.

Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10). Decreasing earliness modulated the impact of LR on yield (–12%) and P-3MH concentration (–6%). Compensating for suppressed leaf area by increasing the trimming height slightly enhanced grape ripening (+1% total sugars; –3% titratable acidity), slightly improved the overall quality of the wine (color intensity, volume), while having no impact on must P-3MH concentration or on wine bouquet.

Observing the long-term impact of each LR treatment separately provided insights into the physiological mechanisms influencing fruit development and aroma formation. This trial is part of a larger project on canopy management and its impact on grape composition in temperate Swiss climatic conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Thibaut Verdenal1*, Vivian Zufferey1, Ágnes Dienes-Nagy2, Gilles Bourdin2, Jean-Laurent Spring1

1 Agroscope, avenue Rochettaz 21, 1009 Pully, Switzerland
2 Agroscope, route de Duillier 60, case postale 1012, 1260 Nyon 1, Switzerland

Contact the author*

Keywords

leaf removal, canopy height, 3-mercaptohexanol, grapevine, wine aroma

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

Impact of yeast strains on wine profiles of nine PIWIs: focus on volatile thiols

Disease resistant grapevine varieties (PIWI) are increasingly important for sustainable wine production, yet the impact of different yeasts on their wine profiles remains poorly studied. In this study, nine white interspecies varieties (i.e., caladris blanc, fleurtai, hibernal, johanniter, muscaris, sauvignon kretos, soreli, souvignier gris, and voltis) grown at the faculty of agriculture, university of Zagreb (Croatia) were vinified with three different saccharomyces cerevisiae yeasts (control strain, zymaflore x5, and zymaflore xarom).

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.