terclim by ICS banner
IVES 9 IVES Conference Series 9 The regulation of ABA-induced anthocyanin accumulation in grape berry

The regulation of ABA-induced anthocyanin accumulation in grape berry

Abstract

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application. Transcriptome and metabolome were conducted and their analysis pointed out that the cis-element of MYBA1 might be responsible for the observed phenotypes. The promoters of MYBA1 were then cloned from both genotypes and several differences in their sequences were observed, but without any mutations in the ABRE elements. Dual-luciferase assay was applied to test the promoter activity and their responses to ABA, with a series of fragmented promoters of MYBA1 from both genotypes. The mutations in a portion of promoter not containing any ABREs were identified as the core for determining the sensitivity of ABA-induced anthocyanin accumulation. These results show the importance of sequence context on the function of cis-element and provide novel insights into the understanding of the mechanisms underlying the diversity of anthocyanin accumulation in grape berry.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Yibei Wang1,2, Junhua Kong1,2, Yongjian Wang1,2, Haiqi Wang1,2, Xiaobo Xu1,2, Boxing Shang1,2, Peige Fan1,2, Zhenchang Liang1,2, Zhanwu Dai1,2*

1 State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
China National Botanical Garden, Beijing 100093, China

Contact the author*

Keywords

color, cis-regulation, sequence context, anthocyanin diversity, metabolism

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Pedological criteria according to the French hierarchy of vintages, Appellations d’Origine Contrôlée (AOC): study of two toposequences located in the Burgundian “Côte”

The concept of terroir is defined by a set of natural and human factors. On the slopy vineyards of the Burgundian « Côte », the « Appellations d’Origine Contrôlée (AOC) » spread out according to the slope in their order of quality : « AOC Grand Cru » at the top, « AOC Premier Cru » and « AOC Village » and « Bourgogne » on the piemont. In order to correlate the hierarchy of the vintages with the evolution of the topographic and pedological criteria, two toposequences were studied, in Gevrey Chambertin (« Côte de Nuits ») and Aloxe Corton (« Côte de Beaune »).

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.