terclim by ICS banner
IVES 9 IVES Conference Series 9 The regulation of ABA-induced anthocyanin accumulation in grape berry

The regulation of ABA-induced anthocyanin accumulation in grape berry

Abstract

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application. Transcriptome and metabolome were conducted and their analysis pointed out that the cis-element of MYBA1 might be responsible for the observed phenotypes. The promoters of MYBA1 were then cloned from both genotypes and several differences in their sequences were observed, but without any mutations in the ABRE elements. Dual-luciferase assay was applied to test the promoter activity and their responses to ABA, with a series of fragmented promoters of MYBA1 from both genotypes. The mutations in a portion of promoter not containing any ABREs were identified as the core for determining the sensitivity of ABA-induced anthocyanin accumulation. These results show the importance of sequence context on the function of cis-element and provide novel insights into the understanding of the mechanisms underlying the diversity of anthocyanin accumulation in grape berry.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Yibei Wang1,2, Junhua Kong1,2, Yongjian Wang1,2, Haiqi Wang1,2, Xiaobo Xu1,2, Boxing Shang1,2, Peige Fan1,2, Zhenchang Liang1,2, Zhanwu Dai1,2*

1 State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
China National Botanical Garden, Beijing 100093, China

Contact the author*

Keywords

color, cis-regulation, sequence context, anthocyanin diversity, metabolism

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation

Caractérisation des relations hydriques sol/vigne dans un terroir languedocien

Par le fait d’une politique agricole communautaire axée sur des objectifs de qualité des produits, la recherche et l’identification des critères de cette qualité deviennent impératives. En viticulture, la notion de qualité du produit est rattachée au concept théorique de «terroir». Ce terme englobe un ensemble de paramètres du milieu (géologie, sol, climat) influant sur la récolte.

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.