terclim by ICS banner
IVES 9 IVES Conference Series 9 Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

Abstract

The increasing frequency of heat waves during grape ripening presents challenges for the production of high-quality wine grapes. This underscores the significance of developing effective irrigation and canopy management techniques to optimize both yield and grape quality.

 A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality. In a four-block experimental vineyard at Bodega Ribas in Mallorca, two irrigation treatments—moderate and severe deficit irrigation—were implemented. Within each irrigation plot, three light exposure treatments were randomly assigned, encompassing exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity were assessed biweekly, and midday leaf water potential was measured weekly. Sensors for light and temperature were installed at the bunch level to quantify differences in bunch temperature and light intensity among treatments. The influence of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH was analyzed at five points during grape ripening. Furthermore, the phenolic profile of grapes was analyzed at harvest in 2022. In the face of various heat waves, the natural shading technique reduced the maximum bunch temperature by approximately 10 °C compared to exposed bunches, regardless of the irrigation strategy. The combination of defoliation and shading techniques after softening led to a reduction in TSS at harvest and affected most quality parameters during the latter stages of ripening. This highlights an intriguing approach to delaying ripening in warm viticulture regions.

Funding: PID2021-125575OR-C22 project funded by MCIN/AEI/10.13039/501100011033/ and FEDER Una manera de hacer Europa; BIA11/21 project funded by Conselleria d’Agricultura Pesca i Alimentació and FOGAIBA.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jaume Puigserver 1, Josefina Bota*1 Belén Padilla2, and Esther Hernández-Montes3

1 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Balearic Islands, Spain
Bodega Ribas, Consell (Mallorca), Spain
CEIGRAM-Polithecnical University of Madrid, Madrid, Spain

Contact the author*

Keywords

shading, defoliation, grape ripening, irrigation, grape quality

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case

In this video recording of the IVES science meeting 2023, Sara Bernardo (CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case. This presentation is based on an original article accessible for free on OENO One.

Discrimination of monovarietal Italian red wines using derivative voltammetry

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics.

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Wineries of Beaumes-de-Venise area make their best red wines with grapes from the “Triassic terroir”. This « terroir » is characterized by soils from the Triassic period. These specific soils are complex and quite heterogeneous. They originate from an eventful geological history to keep in mind to understand soils geographical distribution.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.