terclim by ICS banner
IVES 9 IVES Conference Series 9 Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

Abstract

The increasing frequency of heat waves during grape ripening presents challenges for the production of high-quality wine grapes. This underscores the significance of developing effective irrigation and canopy management techniques to optimize both yield and grape quality.

 A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality. In a four-block experimental vineyard at Bodega Ribas in Mallorca, two irrigation treatments—moderate and severe deficit irrigation—were implemented. Within each irrigation plot, three light exposure treatments were randomly assigned, encompassing exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity were assessed biweekly, and midday leaf water potential was measured weekly. Sensors for light and temperature were installed at the bunch level to quantify differences in bunch temperature and light intensity among treatments. The influence of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH was analyzed at five points during grape ripening. Furthermore, the phenolic profile of grapes was analyzed at harvest in 2022. In the face of various heat waves, the natural shading technique reduced the maximum bunch temperature by approximately 10 °C compared to exposed bunches, regardless of the irrigation strategy. The combination of defoliation and shading techniques after softening led to a reduction in TSS at harvest and affected most quality parameters during the latter stages of ripening. This highlights an intriguing approach to delaying ripening in warm viticulture regions.

Funding: PID2021-125575OR-C22 project funded by MCIN/AEI/10.13039/501100011033/ and FEDER Una manera de hacer Europa; BIA11/21 project funded by Conselleria d’Agricultura Pesca i Alimentació and FOGAIBA.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jaume Puigserver 1, Josefina Bota*1 Belén Padilla2, and Esther Hernández-Montes3

1 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Balearic Islands, Spain
Bodega Ribas, Consell (Mallorca), Spain
CEIGRAM-Polithecnical University of Madrid, Madrid, Spain

Contact the author*

Keywords

shading, defoliation, grape ripening, irrigation, grape quality

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Interactions « Terroir x Vigne » : facteurs de maîtrise du micro-environnement et de la physiologie de la plante en rapport avec le niveau de maturité et les éléments de typicité

Le vigneron européen est de plus en plus à la recherche de la valorisation de son terroir par la personnalisation de la typicité de ses produits. Dans ce contexte, il est apparu depuis longtemps que la part des facteurs technologiques ou humains est d’une importance capitale face aux conditions de l’envirormement naturel. Le terroir se construit plus qu’il ne se subit.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .