terclim by ICS banner
IVES 9 IVES Conference Series 9 Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Abstract

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

The use of cover crops under the vines tended to decrease vegetative growth and increase yield, although these differences were modulated by the edaphoclimatic characteristics of the area. Few effects were observed on berry quality at harvest, with only some variations on berry mass and malic acid content in the cover cropped treatment. On the other hand, soil health indicators were improved, the cover crop establishment accounting for a better nutrient profile in soils and microbial diversity. In conclusion, the use of under-vine covers could be an alternative to conventional management to control the growth of adventitious vegetation with little competition with the vines and improved soil quality.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

A. Fernández-Morales1, I. Virto3, M. Velaz1, Isabel de Soto3, Alberto Enrique3, M. Loidi1, M. Galar1, L.G. Santesteban1,2, N. Torres1,2*

1  Dept. of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia 31006 Pamplona, Spain
3 Dept. of Sciences, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Navarra, Spain

Contact the author*

Keywords

Berry quality, legumes, soil health, soil management, vineyard-living microbiota

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Accurate Quantification of Quality Compounds and Varietal Classification from Grape Extracts using the Absorbance-Transmittance Fluorescence Excitation Emission Matrix (A-TEEM) Method and Machine Learning

Rapid and accurate quantification of grape berry phenolics, anthocyanins and tannins, and identification of grape varieties are both important for effective quality control of harvesting and initial processing for wine making. Current reference technologies including High Performance Liquid Chromatography (HPLC) can be rate limiting and too complex and expensive for effective field operations

Towards 2D mapping of gaseous ethanol in the headspace of wine glasses by infrared laser spectrometry

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the chemical space perceived by the consumer in the glass headspace.

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies