terclim by ICS banner
IVES 9 IVES Conference Series 9 Veraison as determinant for wine quality and its potential for climate adapted breeding

Veraison as determinant for wine quality and its potential for climate adapted breeding

Abstract

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

The high variance in ripening time within this population was identified as major factor influencing the quality potential of the individual genotypes. This is mainly induced by the early veraison locus Ver1 on chromosome 16 genetically inherited by ‘Calardis Musqué’. Ver1 could be traced back to the early ripening ‘Pinot Noir’ (PN) clone ‘Pinot Precoce Noir’ (PPN). Many important quality attributes of the population were directly affected, especially sugars, organic acids, pH value and key aroma compounds. For some of these constituents the Ver1 locus shows the highest genetic impact in QTL analysis. Understanding the genetic base of ripening and the subsequently resulting effects on quality offers breeders knowledge and helpful tools for the early and efficient selection of genotypes carrying hidden (at least until the first full yield) potential for quality oriented climate-adaption. Furthermore, it enables the implementation of additional selection criteria in marker-assisted selection (MAS), when stacking of resistance loci is no longer the limiting factor in seedling production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tom Heinekamp1, Franco Röckel1, Maria Maglione1, Lena Frenzke2, Torsten Wenke2, Jochen Vestner3, Stefan Wanke2, Ulrich Fischer3, Reinhard Töpfer1, and Florian Schwander1*

1Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany
2Technische Universität Dresden, Institut für Botanik, Dresden, Germany
3Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

climate change, wine quality, cool climate viticulture, marker development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.