terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

Abstract

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress. The tool will be integrated within VitViz and Grapedia, two web portals that provide access to genomic data of grapevine. The tool allows us to compare the expression of all grapevine genes, using the V3 genome of ‘PN40024’ as a reference. With this app, we discovered a couple of genes that could boost the drought tolerance of grapevines by cis/trans-genesis (such as the raffinose synthase and AQUILO) or by genome editing (GRETCHEN HAGEN gene). We applied these two methods to different rootstocks and cultivars of grapevines.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Álvaro Vidal Valenzuela1,2,3,4*, José Tomás Matus2,Antonio Santiago Pajuelo2, Maria Stella Grando4, Felipe Gainza-Cortés3, Lorenza Dalla Costa1, Mickael Malnoy1

1 Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San michelle all’adige(TN), Italy
2 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
3 Center for Research and Innovation (CII), Viña Concha y Toro, 3550000 , Pencahue, Chile
4 Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38010 San Michele all’Adige, Italy

Contact the author*

Keywords

Transcriptome, Abiotic stress, Drought, Rna-seq, Bioinformatics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.

Zoning, environment, and landscape: historic and perspective

Dans une approche globale, nous proposons la définition suivante du zonage : “représentation cartographique associée à une sectorisation du territoire en zones unitaires homogènes à partir de facteurs discriminants établis sur la base d’indicateurs quantifiables et d’avis d’experts”. La première application de cette méthode a porté sur la caractérisation du terroir en liaison avec les aspects qualitatifs des vins. Il est également possible d’envisager d’appliquer cette démarche dans les stratégies environnementales et paysagères liées aux approches territoriales et aux pratiques viticoles. Cette méthode peut servir de base dans la mise en œuvre des outils financiers associés aux mesures environnementales (CTE, aides spécifiques).

Terroir and climate: the role of homoclime matching

Climate is an important component or determinant of terroir, especially at the regional level. One can define three levels of terroir. These are the macro– or regional scale, which applies over tens of kilometres of the landscape. The second level is the meso- scale, which applies over kilometres or hundreds of meters, at the individual vineyard scale.