terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

Abstract

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress. The tool will be integrated within VitViz and Grapedia, two web portals that provide access to genomic data of grapevine. The tool allows us to compare the expression of all grapevine genes, using the V3 genome of ‘PN40024’ as a reference. With this app, we discovered a couple of genes that could boost the drought tolerance of grapevines by cis/trans-genesis (such as the raffinose synthase and AQUILO) or by genome editing (GRETCHEN HAGEN gene). We applied these two methods to different rootstocks and cultivars of grapevines.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Álvaro Vidal Valenzuela1,2,3,4*, José Tomás Matus2,Antonio Santiago Pajuelo2, Maria Stella Grando4, Felipe Gainza-Cortés3, Lorenza Dalla Costa1, Mickael Malnoy1

1 Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San michelle all’adige(TN), Italy
2 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
3 Center for Research and Innovation (CII), Viña Concha y Toro, 3550000 , Pencahue, Chile
4 Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38010 San Michele all’Adige, Italy

Contact the author*

Keywords

Transcriptome, Abiotic stress, Drought, Rna-seq, Bioinformatics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Winemaking options for the improvement of the attributes of the wines from grapes with different oenological potential and sanitary status

The aim of this work was to study winemaking alternatives that will optimize the quality of the Tannat wines, taking advantage of the grape’s oenological potential.

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

Colour, phenolic, and sensory characteristics of commercial monovarietal white wines produced with maceration

White wines produced with skin and seed contact are of great interest in the wine sector. Maceration, whether performed prior to or concurrently with alcoholic fermentation, or even extended beyond its completion, significantly impacts the chromatic, mouthfeel, and aroma characteristics of these wines.

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.