terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

Abstract

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress. The tool will be integrated within VitViz and Grapedia, two web portals that provide access to genomic data of grapevine. The tool allows us to compare the expression of all grapevine genes, using the V3 genome of ‘PN40024’ as a reference. With this app, we discovered a couple of genes that could boost the drought tolerance of grapevines by cis/trans-genesis (such as the raffinose synthase and AQUILO) or by genome editing (GRETCHEN HAGEN gene). We applied these two methods to different rootstocks and cultivars of grapevines.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Álvaro Vidal Valenzuela1,2,3,4*, José Tomás Matus2,Antonio Santiago Pajuelo2, Maria Stella Grando4, Felipe Gainza-Cortés3, Lorenza Dalla Costa1, Mickael Malnoy1

1 Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38098 San michelle all’adige(TN), Italy
2 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
3 Center for Research and Innovation (CII), Viña Concha y Toro, 3550000 , Pencahue, Chile
4 Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38010 San Michele all’Adige, Italy

Contact the author*

Keywords

Transcriptome, Abiotic stress, Drought, Rna-seq, Bioinformatics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Terracing in steep slope viticulture and its potential to promote biodiversity in vineyard ecosystems

Viticulture on steep slopes has shaped exceptionally species-rich cultural landscapes in Germany.

Moving beyond visible flower counting: RGB image-based flower number and yield prediction in grapevine

Accurate yield estimation is crucial for optimizing vineyard management and logistical organization. Traditional methods relying on manual and destructive flower or berry counts are labor-intensive and unsuitable for large-scale applications.

White wine lees: unlocking the relationship between chemical composition and antioxidant potential

The wine-making process generates numerous by-products at each stage (crushing, fermentation, ageing), including wine lees, which account for almost 25% of the total quantity.

Modelling leaf water potential from physiological and meteorological variables – A machine learning approach

Viticulture is a key economic sector in the mediterranean region. However, climate change is affecting global viticulture, increasing the frequency of heatwaves and drought events.

Tracing glycosidically-bound smoke taint markers from grape to wine

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke.