terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Abstract

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.  
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI,  50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI.  
With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Gianmaria Califano1,2*, Júlio Lucena Maciel1Olfa Zarrouk3,4, Miguel Damásio5, Jose Silvestre5, Ana Margarida Fortes1,2

1Faculdade de Ciências, University of Lisbon, Portugal
2BioISI, Faculdade de Ciências, University of Lisbon, Portugal
3LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
4IRTA, Torre Marimon, Barcelona, Spain;
5INIAV, Polo de Dois Portos, Portugal

Contact the author*

Keywords

Soil Microbiome, Grapevine, Syrah, Drought, Crop Sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evaluation of the site index model for viticultural zoning

Une variable composite, dénommée Indice de Site (SI), intégrant les propriétés physiques du sol et le mésoclimat, avait été proposée pour caractériser les terroirs dans le cadre d’une étude des vignobles de Cabernet Sauvignon de Hawke’s Bay en Nouvelle Zélande.

Deep learning based models for grapevine phenology

the phenological evolution is a crucial aspect of grapevine growth and development. Accurate detection of phenological stages can improve vineyard management, leading to better crop yield and quality traits. However, traditional methods of phenological tracking such as on-site observations are time-consuming and labour-intensive. This work proposes a scalable data-driven method to automatically detect key phenological stages of grapevines using satellite data. Our approach applies to vast areas because it solely relies on open and satellite data having global coverage without requiring any in-field data from weather stations or other sensors making the approach extensible to other areas.

Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

This study evaluates the effect of different oenological factors and natural mediators on the degradation of Ochratoxin A (OTA) using Botrytis cinerea laccase.

Traditional agroforestry vineyards, sources of inspiration for the agroecological transition of viticulture

A unique “terroir” can be found in southern Bolivia, which combines the specific features of climate, topography and altitude of high valleys, with the management of grapevines staked on trees. It is one of the rare remnants of agroforestry viticulture. A survey was carried out among 29 grapegrowers in three valleys, to characterize the structure and management of these vineyards, and identify the services they expect from trees. Farms were small (2.2 ha on average) and 85% of vineyards were less than 1 ha. Viticulture was associated with vegetable, fruit and fodder production, sometimes in the same fields. Molle trees were found in all plots, together with one or two other native tree species. Traditional grapevine varieties such as Negra Criolla, Moscatel de Alejandría and Vicchoqueña were grown with a large range of densities from 1550 to 9500 vines ha-1. From 18 to 30% of them were staked on trees, with 1.2 to 4.9 vines per tree. The management of these vineyards (irrigation, fertilization and grapevine protection) was described, the most particular technical operation being the coordinated pruning of trees and grapevines. Three types of management could be identified in the three valleys. Grapegrowers had a clear idea of the ecosystem services they expected from trees in their vineyards. The main one was protection against climate hazards (hail, frost, flood). Then they expected benefits in terms of pest and disease control, improvement of soil fertility and resulting yield. At last, some producers claimed that tree-staking was quicker and cheaper than conventional trellising. It can be hypothesized then that agroforestry is a promising technique for the agroecological transition of viticulture. Its contribution to the “terroir” of the high valleys of southern Bolivia and its link with the specificities of the wines and spirits produced there remain to be explored.

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.