terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Abiotic interactions 9 Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Abstract

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.  
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI,  50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI.  
With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Gianmaria Califano1,2*, Júlio Lucena Maciel1Olfa Zarrouk3,4, Miguel Damásio5, Jose Silvestre5, Ana Margarida Fortes1,2

1Faculdade de Ciências, University of Lisbon, Portugal
2BioISI, Faculdade de Ciências, University of Lisbon, Portugal
3LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
4IRTA, Torre Marimon, Barcelona, Spain;
5INIAV, Polo de Dois Portos, Portugal

Contact the author*

Keywords

Soil Microbiome, Grapevine, Syrah, Drought, Crop Sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Modeling from functioning of a grape berry to the whole plant

Grape quality is a complex trait that mainly refers to berry chemical composition, including sugars, organic acids, phenolics, aroma and aroma precursor compounds.

Field evaluation of biofungicides to control powdery mildew and botrytis bunch rot of wine grapes in California

Grapevine powdery mildew caused by Erysiphe necator and Botrytis bunch rot caused by Botrytis cinerea are two of the most important fungal diseases in California grape production.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.