terclim by ICS banner
IVES 9 IVES Conference Series 9 Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Abstract

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber. A significant genotypic effect on leaf burn was confirmed on detached leaves like on whole plants outdoors, although with a different ranking of the varieties. As the air temperature in the growth chamber and during the 2019 heat peak evolved similarly, we hypothesized that other conditions, including light or evaporative demand, may have differentially favored one or other of the different physiological determinants of leaf burn. Therefore, in parallel with the development of burns on detached leaves exposed to high temperature in the growth chamber, changes in leaf temperature, transpiration rate, membrane damages and chlorophyll fluorescence were monitored. Significant differences between cultivars in leaf temperature and in the reduction of maximum photosynthesis yield were highlighted. Genetic variation in leaf burns correlated with some of these physiological responses paving the way to the identification of genotypes or conditions with minimal symptoms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Laurine Chir1, Lison Lepilleur1, Romain Boulord1, Stéphane Berhézène1, Renaud Fournier1, Llorenç Cabrera-Bosquet1, Thierry Simonneau1, Aude Coupel-Ledru1

1 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

heatwave, genetic variability, leaf burn, chlorophyll fluorescence, hydraulics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Optimization and validation of a fully automated HS-SPME method for determination of VCCs and its application in wines submitted to accelerated ageing

Wine aroma is a complex gaseous mixture composed of various compounds; some of these molecules derive directly from the grapes while most of them are released and synthetized during fermentation or are due to ageing reactions

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”.