terclim by ICS banner
IVES 9 IVES Conference Series 9 Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Abstract

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber. A significant genotypic effect on leaf burn was confirmed on detached leaves like on whole plants outdoors, although with a different ranking of the varieties. As the air temperature in the growth chamber and during the 2019 heat peak evolved similarly, we hypothesized that other conditions, including light or evaporative demand, may have differentially favored one or other of the different physiological determinants of leaf burn. Therefore, in parallel with the development of burns on detached leaves exposed to high temperature in the growth chamber, changes in leaf temperature, transpiration rate, membrane damages and chlorophyll fluorescence were monitored. Significant differences between cultivars in leaf temperature and in the reduction of maximum photosynthesis yield were highlighted. Genetic variation in leaf burns correlated with some of these physiological responses paving the way to the identification of genotypes or conditions with minimal symptoms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Laurine Chir1, Lison Lepilleur1, Romain Boulord1, Stéphane Berhézène1, Renaud Fournier1, Llorenç Cabrera-Bosquet1, Thierry Simonneau1, Aude Coupel-Ledru1

1 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

heatwave, genetic variability, leaf burn, chlorophyll fluorescence, hydraulics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Analytical characterization of Oloroso Sherry in Sherry Cask seasoning and its influence in the ageing of brandy de jerez

Oloroso Sherry is a typical fortified wine from Jerez de la Frontera (south of Spain). It is one of the most used in the seasoning of oak barrels, called Sherry Cask, destined in this area for ageing brandies or condiments as wine vinegars. Brandy de Jerez is an European Geographical Indication for grape-derived spirits. Its special organoleptic characteristics are due to its traditional dynamic ageing in Sherry Casks. American oak is the most common wood employed in Jerez area, where Brandy de Jerez is exclusively manufactured. During ageing period of Sherry and brandies, the wood is not only a container, it is involved in several physicochemical process with the Sherry or the distillate. Oak wood is the responsible of the presence of many compounds in the products, affecting their aroma and chemical composition and having a high influence in their final quality. Moreover, the seasoned wood with Sherry wine could transfer the compounds from wine into the brandy, improving its aroma and flavor.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.