terclim by ICS banner
IVES 9 IVES Conference Series 9 Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Abstract

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber. A significant genotypic effect on leaf burn was confirmed on detached leaves like on whole plants outdoors, although with a different ranking of the varieties. As the air temperature in the growth chamber and during the 2019 heat peak evolved similarly, we hypothesized that other conditions, including light or evaporative demand, may have differentially favored one or other of the different physiological determinants of leaf burn. Therefore, in parallel with the development of burns on detached leaves exposed to high temperature in the growth chamber, changes in leaf temperature, transpiration rate, membrane damages and chlorophyll fluorescence were monitored. Significant differences between cultivars in leaf temperature and in the reduction of maximum photosynthesis yield were highlighted. Genetic variation in leaf burns correlated with some of these physiological responses paving the way to the identification of genotypes or conditions with minimal symptoms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Laurine Chir1, Lison Lepilleur1, Romain Boulord1, Stéphane Berhézène1, Renaud Fournier1, Llorenç Cabrera-Bosquet1, Thierry Simonneau1, Aude Coupel-Ledru1

1 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

heatwave, genetic variability, leaf burn, chlorophyll fluorescence, hydraulics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Wine quality is defined by sensory and physico-chemical characteristics. In particular, sensory features are very important since they strongly condition wine acceptability by consumers. However, the evaluation of sensory quality can be subjective, unless performed by a tasting panel of experienced tasters. Therefore, it is of great relevance to establish relationships between objective chemical parameters and sensory perceptions, even though the complexity of wine composition makes it difficult. In this sense, more reliable relationships can be found for a particular wine typology or variety. The present study aimed to predict the perceived sensory quality from the physico-chemical parameters of ‘Barbera d’Asti’ DOCG red wines (Italy).

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

HRATA : A new sensory methodology using advantage of wine aromatic wheels

Wine is an intrinsically complex aromatic product. To formalize this aromatic diversity and the hierarchical structure of the aromas, it is common to present them in the form of a wheel of aromas. These are used for learning and communication purposes but never for the acquisition of sensory characteristics.