terclim by ICS banner
IVES 9 IVES Conference Series 9 Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Abstract

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber. A significant genotypic effect on leaf burn was confirmed on detached leaves like on whole plants outdoors, although with a different ranking of the varieties. As the air temperature in the growth chamber and during the 2019 heat peak evolved similarly, we hypothesized that other conditions, including light or evaporative demand, may have differentially favored one or other of the different physiological determinants of leaf burn. Therefore, in parallel with the development of burns on detached leaves exposed to high temperature in the growth chamber, changes in leaf temperature, transpiration rate, membrane damages and chlorophyll fluorescence were monitored. Significant differences between cultivars in leaf temperature and in the reduction of maximum photosynthesis yield were highlighted. Genetic variation in leaf burns correlated with some of these physiological responses paving the way to the identification of genotypes or conditions with minimal symptoms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Laurine Chir1, Lison Lepilleur1, Romain Boulord1, Stéphane Berhézène1, Renaud Fournier1, Llorenç Cabrera-Bosquet1, Thierry Simonneau1, Aude Coupel-Ledru1

1 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

heatwave, genetic variability, leaf burn, chlorophyll fluorescence, hydraulics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.

Unveiling the impact of seasonal weather and fungicide spraying on vineyard autochthonous yeast populations: implications for Riesling wine quality

Fungicide spraying is a common viticultural practice that occurs throughout the growth season that protects developing vines and bunches against diseases caused by fungi or oomycetes.

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages.

Social and environmental impacts of the adoption of a variety of table grape in the region of vale do São Francisco – Brazil

This study explores and analyzes the socio-environmental implications associated with the cultivation of the “brs-vitoria” table grape variety. Focusing on its adoption by farmers in the vale do submédio São Francisco region in Brazil, this study delves into the diverse impacts and changes brought about since its introduction, encompassing both the social and environmental dimensions of agricultural practices in the area. Embrapa, brazil’s federal agricultural research institution, encompasses a network of 43 thematic research centers spread across the nation.

Novel ATR-FTIR and UV-Vis spectral markers for assessing the Prooxidant/Antioxidant Balance (PAB) in white wines

The browning index (BI), based on the absorbance at 420 nm, is a common oxidation marker in white wines, typically measured after thermal stress (50–60 °C for 5 up to 12 days) in air-saturated wines.