terclim by ICS banner
IVES 9 IVES Conference Series 9 Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Abstract

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform. To assess traits related to carbon and water functioning on the whole panel, we deployed an original approach where 120 leaves of 40 genotypes were phenotyped combining low-throughput devices to precisely measure ecophysiological traits, as well as innovative, portable high-throughput devices to measure near infrared reflectance, porometry and chlorophyll fluorescence. These data allowed us to build cutting-edge statistical models, such as multiblock models, which jointly use data from different devices, for predicting ecophysiological traits. Models for predicting photosynthesis and transpiration were accurate enough to be applied on the entire panel, only measured with high-throughput devices. Such predictions highlighted a wide range of genotypic variability and contrasting responses to water deficit. Multi-traits and Multi-Environment Genome Wide Association Studies further revealed genomic regions associated with these responses, and underlying candidate genes are being investigated. 

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Eva Coindre1,2*, Laurine Chir2, Maxime Ryckewaert3, Romain Boulord2, Mélyne Falcon2, Thomas Laisné2, Gaëlle Rolland2, Maëlle Lis2, Llorenç Cabrera-Bosquet2, Agnès Doligez1, Thierry Simonneau2, Benoît Pallas2, Aude Coupel-Ledru2, Vincent Segura1,4

1 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
2 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
3 Inria, LIRMM, Univ Montpellier, CNRS, Montpellier, France
4 UMT Geno-Vigne, IFV, INRAE, Montpellier, France

Contact the author*

Keywords

water deficit, high throughput phenotyping, prediction, photosynthesis/transpiration coupling, GWAS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.