terclim by ICS banner
IVES 9 IVES Conference Series 9 Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Abstract

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform. To assess traits related to carbon and water functioning on the whole panel, we deployed an original approach where 120 leaves of 40 genotypes were phenotyped combining low-throughput devices to precisely measure ecophysiological traits, as well as innovative, portable high-throughput devices to measure near infrared reflectance, porometry and chlorophyll fluorescence. These data allowed us to build cutting-edge statistical models, such as multiblock models, which jointly use data from different devices, for predicting ecophysiological traits. Models for predicting photosynthesis and transpiration were accurate enough to be applied on the entire panel, only measured with high-throughput devices. Such predictions highlighted a wide range of genotypic variability and contrasting responses to water deficit. Multi-traits and Multi-Environment Genome Wide Association Studies further revealed genomic regions associated with these responses, and underlying candidate genes are being investigated. 

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Eva Coindre1,2*, Laurine Chir2, Maxime Ryckewaert3, Romain Boulord2, Mélyne Falcon2, Thomas Laisné2, Gaëlle Rolland2, Maëlle Lis2, Llorenç Cabrera-Bosquet2, Agnès Doligez1, Thierry Simonneau2, Benoît Pallas2, Aude Coupel-Ledru2, Vincent Segura1,4

1 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
2 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
3 Inria, LIRMM, Univ Montpellier, CNRS, Montpellier, France
4 UMT Geno-Vigne, IFV, INRAE, Montpellier, France

Contact the author*

Keywords

water deficit, high throughput phenotyping, prediction, photosynthesis/transpiration coupling, GWAS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Biodiversidad de levaduras no-Saccharomyces aisladas de viñedos uruguayos: Lachancea thermotolerans y su potencial en la industria de bebidas fermentadas

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.