terclim by ICS banner
IVES 9 IVES Conference Series 9 Integrated approaches for the functional characterization of miRNAs in grapevine

Integrated approaches for the functional characterization of miRNAs in grapevine

Abstract

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine. Transgenic plants were generated by either overexpressing or silencing vvi-miR393, a miRNA conserved in different plant species, and vvi_miC137, a grapevine-specific miRNA whose function is unknown despite being transcriptionally regulated in response to biotic and abiotic stresses. A total of 212 transgenic grapevines from two V. vinifera cultivars (Chardonnay and Bragat rosa) and the 110R rootstock were characterized. Molecular analyses showed that overexpressing lines increased the expression of the selected miRNAs up to 10-fold, whereas silencing by short tandem target mimic (STTM) approach reduced the expression of mature miRNAs by 70%. Five independed transgenic lines for each genotype and construct were acclimatised in greenhouse. Additionally, vvi_miC137 lines were ecophysiologically characterized under well-watered and drought conditions. Preliminary results showed that vvi_miC137 influenced plant development and leaf gas exchanges, its partial silencing improved grapevine growth performance. This miRNA could represent a new potential target for genetic improvement by gene editing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Chiara Pagliarani1, Amedeo Moine1, Anastasiia Kasianova1,2, Paolo Boccacci1, Luca Nerva3, Andrea Delliri1, Claudio Lovisolo2, Walter Chitarra3, Irene Perrone1, Giorgio Gambino1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
3 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

miRNAs, genetic transformation, functional studies, grapevine development, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

An overview of the impact of clone, environmental factors and viticultural techniques on rotundone concentration in red wines

Rotundone is the main aroma compound responsible for peppery notes in red wine. This positive and very potent molecule has an odor threshold of 8 ng/L in water and 16 ng/L in red wine. It has been detected in several grape varieties with some of the highest concentrations recorded in Syrah, Duras, Tardif and Noiret, an interspecific hybrid grown in the North-East of the USA. If several winemaking practices have been identified to lower rotundone in wine, up to date, no enological solution has proved its efficiency to maximize it. This means that efforts to produce high rotundone wines must be undertaken in vineyards. This work provides practical ways that can be used by winegrowers to modulate rotundone levels in their wines.

The challenge of viticultural landscapes

Le monde vitivinicole est de plus en plus concerné par la question paysagère : l’enjeu est de taille puisqu’il s’agit de la survie de l’image positive dont bénéficient les Appellations d’Origine Contrôlée. Les paysages sont composés d’éléments qui renvoient à des références socioculturelles fortes, susceptibles de modeler l’image d’un produit et d’en déterminer à notoriété et le prix. Dans un monde médiatisé comme le nôtre, le visuel construit l’arrière-plan des représentations mentales associées à toute marchandise ; et pour les aliments, produits de la terre, ce visuel est forcément paysager.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).