terclim by ICS banner
IVES 9 IVES Conference Series 9 Integrated approaches for the functional characterization of miRNAs in grapevine

Integrated approaches for the functional characterization of miRNAs in grapevine

Abstract

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine. Transgenic plants were generated by either overexpressing or silencing vvi-miR393, a miRNA conserved in different plant species, and vvi_miC137, a grapevine-specific miRNA whose function is unknown despite being transcriptionally regulated in response to biotic and abiotic stresses. A total of 212 transgenic grapevines from two V. vinifera cultivars (Chardonnay and Bragat rosa) and the 110R rootstock were characterized. Molecular analyses showed that overexpressing lines increased the expression of the selected miRNAs up to 10-fold, whereas silencing by short tandem target mimic (STTM) approach reduced the expression of mature miRNAs by 70%. Five independed transgenic lines for each genotype and construct were acclimatised in greenhouse. Additionally, vvi_miC137 lines were ecophysiologically characterized under well-watered and drought conditions. Preliminary results showed that vvi_miC137 influenced plant development and leaf gas exchanges, its partial silencing improved grapevine growth performance. This miRNA could represent a new potential target for genetic improvement by gene editing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Chiara Pagliarani1, Amedeo Moine1, Anastasiia Kasianova1,2, Paolo Boccacci1, Luca Nerva3, Andrea Delliri1, Claudio Lovisolo2, Walter Chitarra3, Irene Perrone1, Giorgio Gambino1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
3 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

miRNAs, genetic transformation, functional studies, grapevine development, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Laying footprints on a new path: proper accounting of biogenic fluxes makes viticulture carbon neutral

To limit the acceleration of global warming we need to reduce greenhouse gases emissions (GHG), making our production processes more carbon-efficient and optimizing absorptions.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Identification of natural terroir units for viticulture: Stellenbosch, South Africa

Une unité de terroir naturel (UTN) peut être définie comme une unité de terre qui est caractérisée par une relative homogénéité topographique, climatique, géologique et pédologique. De telles unités sont de grande valeur pour mieux comprendre le système terroir/vigne/vin. Le but de cette étude est de caractériser la région viticole du Bottelaryberg. – Simonsberg-Helderberg en utilisant une information digitale existante et d’identifier des UTN en utilisant un Système d’information Géographique.

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.