terclim by ICS banner
IVES 9 IVES Conference Series 9 Integrated approaches for the functional characterization of miRNAs in grapevine

Integrated approaches for the functional characterization of miRNAs in grapevine

Abstract

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine. Transgenic plants were generated by either overexpressing or silencing vvi-miR393, a miRNA conserved in different plant species, and vvi_miC137, a grapevine-specific miRNA whose function is unknown despite being transcriptionally regulated in response to biotic and abiotic stresses. A total of 212 transgenic grapevines from two V. vinifera cultivars (Chardonnay and Bragat rosa) and the 110R rootstock were characterized. Molecular analyses showed that overexpressing lines increased the expression of the selected miRNAs up to 10-fold, whereas silencing by short tandem target mimic (STTM) approach reduced the expression of mature miRNAs by 70%. Five independed transgenic lines for each genotype and construct were acclimatised in greenhouse. Additionally, vvi_miC137 lines were ecophysiologically characterized under well-watered and drought conditions. Preliminary results showed that vvi_miC137 influenced plant development and leaf gas exchanges, its partial silencing improved grapevine growth performance. This miRNA could represent a new potential target for genetic improvement by gene editing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Chiara Pagliarani1, Amedeo Moine1, Anastasiia Kasianova1,2, Paolo Boccacci1, Luca Nerva3, Andrea Delliri1, Claudio Lovisolo2, Walter Chitarra3, Irene Perrone1, Giorgio Gambino1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
3 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

miRNAs, genetic transformation, functional studies, grapevine development, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Soil carbon changes and greenhouse gas emissions in vineyards – Is the 4 per 1000 goal realistic?

In this video recording of the IVES science meeting 2023, Hans Reiner Schultz (Hochschule Geisenheim University, Germany) speaks about soil carbon changes and greenhouse gas emissions in vineyards – is the 4 per 1000 goal realistic?. This presentation is based on an original article accessible for free on OENO One.

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: grape and must composition

This work discusses the effects of soil and weather conditions on the grape composition of cv. Tempranillo in four different locations of Spain, during the 2008-2011 seasons.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.