terclim by ICS banner
IVES 9 IVES Conference Series 9 Integrated approaches for the functional characterization of miRNAs in grapevine

Integrated approaches for the functional characterization of miRNAs in grapevine

Abstract

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine. Transgenic plants were generated by either overexpressing or silencing vvi-miR393, a miRNA conserved in different plant species, and vvi_miC137, a grapevine-specific miRNA whose function is unknown despite being transcriptionally regulated in response to biotic and abiotic stresses. A total of 212 transgenic grapevines from two V. vinifera cultivars (Chardonnay and Bragat rosa) and the 110R rootstock were characterized. Molecular analyses showed that overexpressing lines increased the expression of the selected miRNAs up to 10-fold, whereas silencing by short tandem target mimic (STTM) approach reduced the expression of mature miRNAs by 70%. Five independed transgenic lines for each genotype and construct were acclimatised in greenhouse. Additionally, vvi_miC137 lines were ecophysiologically characterized under well-watered and drought conditions. Preliminary results showed that vvi_miC137 influenced plant development and leaf gas exchanges, its partial silencing improved grapevine growth performance. This miRNA could represent a new potential target for genetic improvement by gene editing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Chiara Pagliarani1, Amedeo Moine1, Anastasiia Kasianova1,2, Paolo Boccacci1, Luca Nerva3, Andrea Delliri1, Claudio Lovisolo2, Walter Chitarra3, Irene Perrone1, Giorgio Gambino1*

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
3 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

miRNAs, genetic transformation, functional studies, grapevine development, water stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Apports des mesures de résistivité électrique du sol dans les études sur le fonctionnement de la vigne et dans la spatialisation parcellaire

La mesure de la résistivité électrique des sols est une technique non destructive, spatialement intégrante, utilisée depuis peu en viticulture. L’utilisation d’appareils de mesures performant et de logiciels adaptés permet de traiter les données afin de pouvoir visualiser en deux ou trois dimensions les variations de textures ou d’humidité d’un sol.

Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

AIM: Grape flavanols are involved in wine quality markers such as in-mouth sensations and colour stability.

Viticultural parameters and enological performance of six Merlot clones in two contrasting vintages

Vitis vinifera L. and other Vitis have high genetic variations for cultivars or varieties. Many countries carried out strong efforts creating new clones of varieties, mainly focusing on plants free of viruses and other grapevine diseases, but also on different agronomical and enological characteristics of the plants. The aim of this study was to evaluate six clones of Merlot in the traditional viticulture of southeastern Brazil, focusing on distinct characteristics of yield, enological potential of grapes and wine typicality, in order to improve wine quality.

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.