Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Impact of acidification by fumaric acid at vatting on Cabernet-Sauvignon wine during winemaking

Abstract

AIM. Acidity of grape berries is lowered due to climate changes (1), resulting in musts and wines with higher pHs. These higher pHs induce microbiological instability and chemical modifications with damageable consequences on the color and the organoleptic qualities of the wines (2). To acidify musts, OIV authorizes different approaches such as the use of cation exchangers, treatment by electromembrane, microbiological acidification and chemical acidification. Chemical acidification, the most common, refers to the addition of lactic, malic and tartaric acids. Fumaric acid, known for its high acidifying power, its antimicrobial properties (3,4) but also its high availability, could be a good alternative to acidify musts chemically. Therefore, the present study aims at evaluating the impact of fumaric acid addition at vatting on wine quality in comparison with tartaric acid addition.

METHODS. Micro-winemakings were conducted with mature Cabernet Sauvignon grapes. Two treatments were applied at vatting in duplicate: 1.5g/L tartaric acid (TA) and 1.5g/L TA eq. fumaric acid. Three vats were untreated (controls). Oenological (pH, total acidity, tartaric, malic and lactic acids) and color (CIELAB) parameters, phenolic compounds (total polyphenol index, Folin-Ciocalteu, total free anthocyanins and total tannins) and antioxidant capacities (DPPH, CUPRAC, ORAC) were evaluated at vatting, end of alcoholic fermentation (AF) and malolactic fermentation (MLF). A ranking test and sensory profiles were realized on three-months wines after bottling.

RESULTS. Acid addition at vatting induced an immediate decrease of pH, an increase of total acidity and a change of color but at the end of MLF these changes were attenuated and even disappeared. Total phenolic compounds and antioxidant capacities in post-MLF wines were not or slightly affected by acidification. The major difference was observed for malolactic acid production during MLF. Indeed, wines treated with fumaric acid produced 20% more lactic acid than control and TA-acidified wines. 

CONCLUSIONS

Addition of FA at 1.5g/L tartaric acid eq. during vatting induced a 20% increased production of lactic acid in wine which did not allow a pH decrease or an increase of total acidity in resulting wine compared to control wine. To acidify wines, acid fumaric should be added at another step of winemaking. A current study is investigating FA addition at the end of AF and just before bottling.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Anne-Laure Gancel

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France,Claire PAYAN, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France and Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Monika CHRISTMANN, Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Pierre-Louis TEISSEDRE, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France

Contact the author

Keywords

chemical acidification, fumaric acid, color, phenolic compounds, antioxidant capacity, sensory analysis

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.