Terroir 2008 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2008 9 Climate component of terroir 9 Climate influence on the grapevine phenology and anthocyanins content in wines from the Skopje vineyard area, Republic of Macedonia

Climate influence on the grapevine phenology and anthocyanins content in wines from the Skopje vineyard area, Republic of Macedonia

Abstract

The phenological stages and the content of the anthocyanins of non-irrigated cultivars Blatina, Vranec, Kratoshija, Prokupec and Stanushina were study. The cultivars are located in the Skopje vineyard area. The all examinated cultivars belong to the ecogeographical group of convarietas Pontica, subconvariates balcanica Negr.
The influence of climate was assessed with temperatures sum, sunshine hours and rainfall from the period 2001 to 2004.
The effect of climate and cultivar were found to be highly significant with regard to the vine behavior (phenological stages) and quality of the wine (content of anthocyanins).

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

 Klime BELESKI (1), Zvonimir BOZINOVIC (2), Violeta DIMOVSKA (1), Srebra ILIC-POPOVA (2), Donka DONEVA-SAPCESKA (3)

(1) Institute of Agriculture, Aleksandar Makedonski bb, 1000 Skopje, Republic of Macedonia
(2) Faculty for Agricultural Sciences and Food, Aleksandar Makedonski bb, 1000 Skopje, Republic of Macedonia
(3) Faculty of Technology and Metallurgy, Rudger Boskovic 16, 1000 Skopje, Republic of Macedonia

Contact the author

Keywords

vitis vinifera, climate, phenology, anthocyanins

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Climate and the evolving mix of grape varieties in Australia’s wine regions

The purpose of this study is to examine the changing mix of winegrape varieties in Australia so as to address the question: In the light of key climate indicators and predictions of further climate change, how appropriate are the grape varieties currently planted in Australia’s wine regions? To achieve this, regions are classified into zones according to each region’s climate variables, particularly average growing season temperature (GST), leaving aside within-region variations in climates. Five different climatic classifications are reported. Using projections of GSTs for the mid- and late 21st century, the extent to which each region is projected to move from its current zone classification to a warmer one is reported. Also shown is the changing proportion of each of 21 key varieties grown in a GST zone considered to be optimal for premium winegrape production. Together these indicators strengthen earlier suggestions that the mix of varieties may be currently less than ideal in many Australian wine regions, and would become even less so in coming decades if that mix was not altered in the anticipation of climate change. That is, grape varieties in many (especially the warmest) regions will have to keep changing, or wineries will have to seek fruit from higher latitudes or elevations if they wish to retain their current mix of varieties and wine styles.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant