terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Abstract

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.

This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Physiological trials of water stress and recovery were conducted on two populations of different somaclone lines of Vitis vinifera ‘Nebbiolo’ and of 110R (V. rupestris x V. berlandieri) rootstock, respectively regenerated in absence and presence of in vitro selective pressure. During the experiments, dynamic changes in the main eco-physiological parameters were monitored on target somaclones and compared with those measured on plants of the corresponding mother plant lines. Alterations in biometric and anatomical traits were also inspected. The observed responses were further deepened by analyzing differences in the accumulation of defense secondary metabolites and hormones and in the transcription of stress-responsive genes. In parallel, genetic mutations potentially controlling specific physiological adjustments were searched, by sequencing the genomes of the best and worst performing lines.

The integration of physiological, biochemical and molecular data proved that grapevine somaclones are more tolerant to drought and that therefore the exploitation of somaclonal variability can represent an effective and ready-to-use genetic improvement strategy for implementing clonal selection and breeding programs in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amedeo Moine1*, Paolo Boccacci1, Walter Chitarra1,2, Luca Nerva1,2, Giorgio Gambino1, Irene Perrone1, Chiara Pagliarani1

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

Vitis Spp., water stress, somatic embryogenesis, genetic variability, gas exchange

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Possible Reduction Method Of Volatile Acid Content And Polyphenols Of Tokaj Aszú Wines With The Aid Of Citosan Bactericid Wine-Treatments

The historical Tokaj region in northeast Hungary is a UNESCO World Heritage region since 2002 owning 5.500 ha vineyards. Produced from „noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil circumstances (clay, loess on volcanic bedrock) and grape-varieties (Furmint, Hárslevelű) of Tokaj-region offer favourable parameters to the formation of noble rot caused by Botrytis cinerea. The special metabolic activity of Botrytis results in noble rot grapes called “aszú” berries. The grapes undergo complex chemical modifications as the joint result of the enzymatic activity of Botrytis and the physical process of concentration.

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Perception of Rose Oxide Enantiomers, Linalool and α-Terpineol to Gewürztraminer Wine Aroma

Monoterpenes are important aroma compounds in white wines. Many monoterpenes are chiral and the chiral forms have different aroma qualities.

The influence of climate on the grapevine phenology and content of sugar and total acids in the must

For the period of 10 years in the condition of Skopje vineyard area, at two regional (Vranec and Smederevka) and two international (Cabernet sauvignon and Chardonnay) grapevine cultivars, the researches are done.

Assessment of alternative sweetening methods for dealcoholized wine

In recent years, there has been an increase in demand for non-alcoholic wine with an ethanol content of less than 0.5% v/v. The dealcoholization process can take place by various methods, such as vacuum distillation or membrane technologies like osmotic distillation. Compared to distillation, membrane systems often require multiple passes or a combination of multiple separation methods. Complete or almost complete removal of ethanol significantly changes the sensory characteristics of wine.