terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Abstract

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.

This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Physiological trials of water stress and recovery were conducted on two populations of different somaclone lines of Vitis vinifera ‘Nebbiolo’ and of 110R (V. rupestris x V. berlandieri) rootstock, respectively regenerated in absence and presence of in vitro selective pressure. During the experiments, dynamic changes in the main eco-physiological parameters were monitored on target somaclones and compared with those measured on plants of the corresponding mother plant lines. Alterations in biometric and anatomical traits were also inspected. The observed responses were further deepened by analyzing differences in the accumulation of defense secondary metabolites and hormones and in the transcription of stress-responsive genes. In parallel, genetic mutations potentially controlling specific physiological adjustments were searched, by sequencing the genomes of the best and worst performing lines.

The integration of physiological, biochemical and molecular data proved that grapevine somaclones are more tolerant to drought and that therefore the exploitation of somaclonal variability can represent an effective and ready-to-use genetic improvement strategy for implementing clonal selection and breeding programs in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amedeo Moine1*, Paolo Boccacci1, Walter Chitarra1,2, Luca Nerva1,2, Giorgio Gambino1, Irene Perrone1, Chiara Pagliarani1

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

Vitis Spp., water stress, somatic embryogenesis, genetic variability, gas exchange

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Identification of the agronomical and landscape potentialities in Côtes du Rhône area (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Transition metals and light-dependent reactions: application of a response surface methodology approach

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST).

Prosensorial potential of new fungi-resistant varieties in modern oenology

The introduction into the Italian wine supply chain of the latest generation of fungi-resistant grapevine varieties, endowed with a greater or lesser strong resistance to downy and powdery mildews, represents a valid tool of making viticulture more sustainable, particularly in northern regions of the peninsula, where climatic conditions accentuate the pressure of fungal diseases. However, the affirmation of resistant varieties is a function of their agronomic value, as well as of their oenological and sensorial value. The purpose of this study was to evaluate in detail the sensory potential of the new resistant varieties, in order to understand their real possibility of inclusion in the modern global enological context.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

Grapevine genotypes with potential for reducing the carbon footprint in the atmosphere and cultivation in a biological system

The concentration of CO2 in the atmosphere is increasing from year to year. Taking into account the calculations of the greenhouse gas inventory, it was found that approximately 70% of CO2 in the atmosphere is absorbed by vegetation (forests, agricultural land, etc.).