terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Abstract

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.

This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Physiological trials of water stress and recovery were conducted on two populations of different somaclone lines of Vitis vinifera ‘Nebbiolo’ and of 110R (V. rupestris x V. berlandieri) rootstock, respectively regenerated in absence and presence of in vitro selective pressure. During the experiments, dynamic changes in the main eco-physiological parameters were monitored on target somaclones and compared with those measured on plants of the corresponding mother plant lines. Alterations in biometric and anatomical traits were also inspected. The observed responses were further deepened by analyzing differences in the accumulation of defense secondary metabolites and hormones and in the transcription of stress-responsive genes. In parallel, genetic mutations potentially controlling specific physiological adjustments were searched, by sequencing the genomes of the best and worst performing lines.

The integration of physiological, biochemical and molecular data proved that grapevine somaclones are more tolerant to drought and that therefore the exploitation of somaclonal variability can represent an effective and ready-to-use genetic improvement strategy for implementing clonal selection and breeding programs in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amedeo Moine1*, Paolo Boccacci1, Walter Chitarra1,2, Luca Nerva1,2, Giorgio Gambino1, Irene Perrone1, Chiara Pagliarani1

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

Vitis Spp., water stress, somatic embryogenesis, genetic variability, gas exchange

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.

Cumulative effect (6 years) of deficit irrigation in two important cultivars of Douro region, Portugal

Numerous studies have demonstrated the importance of irrigation in improving the grape yield and quality in areas with arid and semiarid climates, particularly in the context of ongoing climate changes. However, the introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies in this region. The present study aimed to evaluate how different irrigation deficits for 6 years would influence production and must quality in Touriga Francesa (TF) and Touriga Nacional (TN) varieties.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.

Harvest dates, climate, and viticultural region zoning in Greece

Climate is clearly one of the most important factors in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Today many assessments of a region’s climate comes from a combination of station and spatial climate data analyses that facilitate the evaluation of the general suitability for viticulture and potential wine styles, allows for comparisons between wine regions, and offers growers a measure of assessing appropriate cultivars and sites.