terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Abstract

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.

This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Physiological trials of water stress and recovery were conducted on two populations of different somaclone lines of Vitis vinifera ‘Nebbiolo’ and of 110R (V. rupestris x V. berlandieri) rootstock, respectively regenerated in absence and presence of in vitro selective pressure. During the experiments, dynamic changes in the main eco-physiological parameters were monitored on target somaclones and compared with those measured on plants of the corresponding mother plant lines. Alterations in biometric and anatomical traits were also inspected. The observed responses were further deepened by analyzing differences in the accumulation of defense secondary metabolites and hormones and in the transcription of stress-responsive genes. In parallel, genetic mutations potentially controlling specific physiological adjustments were searched, by sequencing the genomes of the best and worst performing lines.

The integration of physiological, biochemical and molecular data proved that grapevine somaclones are more tolerant to drought and that therefore the exploitation of somaclonal variability can represent an effective and ready-to-use genetic improvement strategy for implementing clonal selection and breeding programs in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Amedeo Moine1*, Paolo Boccacci1, Walter Chitarra1,2, Luca Nerva1,2, Giorgio Gambino1, Irene Perrone1, Chiara Pagliarani1

1 Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino (Italy)
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

Vitis Spp., water stress, somatic embryogenesis, genetic variability, gas exchange

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C )

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.