Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Abstract

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]). However, temperature variability can be significant at vineyard scale, so knowledge of the various climatic mechanisms leading to this variability is essential in order to improve local management of vineyards in response to climate change. Indeed, current climate change models are not accurate enough to take into account temperature variability at the vineyard scale (Dunn et al., 2015).

This study therefore proposes a method for compare regional modelling and fine-scale observations to map temperatures and bioclimatic indices at fine spatial resolution for some recent growing seasons. This study focuses on two vineyard areas, the Saint-Emilion and Pomerol region in France and the Marlborough vineyard region in New Zealand. A regression model using temperature from networks of measurements has been created in order to map temperature and bioclimatic indices at vineyard scale (100 metres for Marlborough and 25 metres for Saint-Emilion and Pomerol). To complement the field measurements, the advanced physics-based three-dimensional numerical weather model Weather Research and Forecasting – WRF (http://wrf-model.org/index.php) has been used, providing hourly meteorological parameters over a complete growing season for each site at 1, 3 and 9 and 27 kilometre resolution. The output of the WRF model provides temperature, wind speed and direction, pressure, and solar radiation data at these different resolutions.

The application of different scales of modelling allows improvement in understanding the climate component of the specific terroirs of the study areas.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Renan Le Roux (1), Marwan Katurji (2), PeymanZawar-Reza (2), Laure de Rességuier (3), Andrew Sturman (2), Cornelis van Leeuwen (3), Amber Parker (4), Mike Trought (5) and Hervé Quénol (1)

(1) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France
(2) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33140 Villenave d’Ornon,France
(4) Lincoln University, P O Box 85084, Lincoln, Christchurch, New Zealand
(5) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand

Contact the author

Keywords

Climate, phenology, grapevine, bioclimatic indices, modelling

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

Exploring the impact of different closures on tannin evolutions by using metabolomic approach

Condensed tannins (CTs), polymers of flavan-3-ols, are a class of polyphenolic compounds that play a significant role in the organoleptic qualities of red wines, particularly influencing color, astringency and bitterness. These properties are highly dependent on size and structure of these compounds.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.