Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Abstract

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]). However, temperature variability can be significant at vineyard scale, so knowledge of the various climatic mechanisms leading to this variability is essential in order to improve local management of vineyards in response to climate change. Indeed, current climate change models are not accurate enough to take into account temperature variability at the vineyard scale (Dunn et al., 2015).

This study therefore proposes a method for compare regional modelling and fine-scale observations to map temperatures and bioclimatic indices at fine spatial resolution for some recent growing seasons. This study focuses on two vineyard areas, the Saint-Emilion and Pomerol region in France and the Marlborough vineyard region in New Zealand. A regression model using temperature from networks of measurements has been created in order to map temperature and bioclimatic indices at vineyard scale (100 metres for Marlborough and 25 metres for Saint-Emilion and Pomerol). To complement the field measurements, the advanced physics-based three-dimensional numerical weather model Weather Research and Forecasting – WRF (http://wrf-model.org/index.php) has been used, providing hourly meteorological parameters over a complete growing season for each site at 1, 3 and 9 and 27 kilometre resolution. The output of the WRF model provides temperature, wind speed and direction, pressure, and solar radiation data at these different resolutions.

The application of different scales of modelling allows improvement in understanding the climate component of the specific terroirs of the study areas.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Renan Le Roux (1), Marwan Katurji (2), PeymanZawar-Reza (2), Laure de Rességuier (3), Andrew Sturman (2), Cornelis van Leeuwen (3), Amber Parker (4), Mike Trought (5) and Hervé Quénol (1)

(1) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France
(2) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33140 Villenave d’Ornon,France
(4) Lincoln University, P O Box 85084, Lincoln, Christchurch, New Zealand
(5) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand

Contact the author

Keywords

Climate, phenology, grapevine, bioclimatic indices, modelling

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.

Early likovrisi: the new white very early table grape seedless and resistant variety

This paper presents is the create, the study and ampelographic description the new «Early Likovrisi», that was created (2014) in Greece by Pantelis Zamanidis.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Cette étude a pour but d’évaluer la modification de l’état hydrique (potentiel hydrique foliaire), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales, comme conséquence de l’application d’une irrigation modérée. Pour développer l’essai on a appliqué les suivantes

Wines empirical perception and growers management practices in the Anjou Villages Brissac vineyard (France)

The concept of viticultural terroir includes soil, sub-soil, and climatic factors but also many management viticultural and oenological practices which are chosen according to know-how of the winegrowers.