Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Abstract

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]). However, temperature variability can be significant at vineyard scale, so knowledge of the various climatic mechanisms leading to this variability is essential in order to improve local management of vineyards in response to climate change. Indeed, current climate change models are not accurate enough to take into account temperature variability at the vineyard scale (Dunn et al., 2015).

This study therefore proposes a method for compare regional modelling and fine-scale observations to map temperatures and bioclimatic indices at fine spatial resolution for some recent growing seasons. This study focuses on two vineyard areas, the Saint-Emilion and Pomerol region in France and the Marlborough vineyard region in New Zealand. A regression model using temperature from networks of measurements has been created in order to map temperature and bioclimatic indices at vineyard scale (100 metres for Marlborough and 25 metres for Saint-Emilion and Pomerol). To complement the field measurements, the advanced physics-based three-dimensional numerical weather model Weather Research and Forecasting – WRF (http://wrf-model.org/index.php) has been used, providing hourly meteorological parameters over a complete growing season for each site at 1, 3 and 9 and 27 kilometre resolution. The output of the WRF model provides temperature, wind speed and direction, pressure, and solar radiation data at these different resolutions.

The application of different scales of modelling allows improvement in understanding the climate component of the specific terroirs of the study areas.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Renan Le Roux (1), Marwan Katurji (2), PeymanZawar-Reza (2), Laure de Rességuier (3), Andrew Sturman (2), Cornelis van Leeuwen (3), Amber Parker (4), Mike Trought (5) and Hervé Quénol (1)

(1) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France
(2) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33140 Villenave d’Ornon,France
(4) Lincoln University, P O Box 85084, Lincoln, Christchurch, New Zealand
(5) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand

Contact the author

Keywords

Climate, phenology, grapevine, bioclimatic indices, modelling

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

Grapevine rootstock field evaluation under drought and saline condition in California

Climate change impacts grape production worldwide and in California drought and salinity became increasingly challenging for grape growers to maintain sustainable production and fruit quality.

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence.

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Vacuum distillation of Muscaris pomace: temperature effects on aroma composition

The consumption of wine in traditional wine-producing countries like Italy, Spain, and France is decreasing.