Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Abstract

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]). However, temperature variability can be significant at vineyard scale, so knowledge of the various climatic mechanisms leading to this variability is essential in order to improve local management of vineyards in response to climate change. Indeed, current climate change models are not accurate enough to take into account temperature variability at the vineyard scale (Dunn et al., 2015).

This study therefore proposes a method for compare regional modelling and fine-scale observations to map temperatures and bioclimatic indices at fine spatial resolution for some recent growing seasons. This study focuses on two vineyard areas, the Saint-Emilion and Pomerol region in France and the Marlborough vineyard region in New Zealand. A regression model using temperature from networks of measurements has been created in order to map temperature and bioclimatic indices at vineyard scale (100 metres for Marlborough and 25 metres for Saint-Emilion and Pomerol). To complement the field measurements, the advanced physics-based three-dimensional numerical weather model Weather Research and Forecasting – WRF (http://wrf-model.org/index.php) has been used, providing hourly meteorological parameters over a complete growing season for each site at 1, 3 and 9 and 27 kilometre resolution. The output of the WRF model provides temperature, wind speed and direction, pressure, and solar radiation data at these different resolutions.

The application of different scales of modelling allows improvement in understanding the climate component of the specific terroirs of the study areas.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Renan Le Roux (1), Marwan Katurji (2), PeymanZawar-Reza (2), Laure de Rességuier (3), Andrew Sturman (2), Cornelis van Leeuwen (3), Amber Parker (4), Mike Trought (5) and Hervé Quénol (1)

(1) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France
(2) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33140 Villenave d’Ornon,France
(4) Lincoln University, P O Box 85084, Lincoln, Christchurch, New Zealand
(5) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand

Contact the author

Keywords

Climate, phenology, grapevine, bioclimatic indices, modelling

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy to get adaptation to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently used in vineyards are derived from breeding programs involving very small numbers of parental individuals.

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

Un modello di lavoro per lo studio dell’ up-grading tecnologico del vigneto nel Veneto Occidentale. Connettività degli attori e mappatura su dati avepa integrati con rilevamento speditivo e qualitativo

Il lavoro si prefigge di esaminare la propensione alla modernizzazione della viticoltura del Veneto Occidentale, letto attraverso la diffusione di forme di allevamento a sviluppo contenuto.