Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Abstract

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]). However, temperature variability can be significant at vineyard scale, so knowledge of the various climatic mechanisms leading to this variability is essential in order to improve local management of vineyards in response to climate change. Indeed, current climate change models are not accurate enough to take into account temperature variability at the vineyard scale (Dunn et al., 2015).

This study therefore proposes a method for compare regional modelling and fine-scale observations to map temperatures and bioclimatic indices at fine spatial resolution for some recent growing seasons. This study focuses on two vineyard areas, the Saint-Emilion and Pomerol region in France and the Marlborough vineyard region in New Zealand. A regression model using temperature from networks of measurements has been created in order to map temperature and bioclimatic indices at vineyard scale (100 metres for Marlborough and 25 metres for Saint-Emilion and Pomerol). To complement the field measurements, the advanced physics-based three-dimensional numerical weather model Weather Research and Forecasting – WRF (http://wrf-model.org/index.php) has been used, providing hourly meteorological parameters over a complete growing season for each site at 1, 3 and 9 and 27 kilometre resolution. The output of the WRF model provides temperature, wind speed and direction, pressure, and solar radiation data at these different resolutions.

The application of different scales of modelling allows improvement in understanding the climate component of the specific terroirs of the study areas.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Renan Le Roux (1), Marwan Katurji (2), PeymanZawar-Reza (2), Laure de Rességuier (3), Andrew Sturman (2), Cornelis van Leeuwen (3), Amber Parker (4), Mike Trought (5) and Hervé Quénol (1)

(1) LETG-COSTEL, UMR 6554 CNRS, Université de Rennes 2, Place du Recteur Henri Le Moal, Rennes, France
(2) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, F-33140 Villenave d’Ornon,France
(4) Lincoln University, P O Box 85084, Lincoln, Christchurch, New Zealand
(5) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand

Contact the author

Keywords

Climate, phenology, grapevine, bioclimatic indices, modelling

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

Study and valorization of vineyards “terroirs” in the Val de Loire

Face à la concurrence mondiale, il est indispensable de s’orienter vers des vins de qualité, marqués par une typicité et une authenticité inimitables. Le terroir représente, pour une région donnée, un patrimoine unique et non reproductible, qui peut être valorisé à travers l’origine et les caractéristiques sensorielles du vin.

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-

Characterisation of Sicilian Nero d’Avola grape and wine: A preliminary study

The chemical composition and the sensory characteristics of wine result from dynamic interactions between several factors including grape variety, soil, viticultural techniques, climate conditions, yeasts metabolism, oenological approaches. Recently, Grigg et al.