terclim by ICS banner
IVES 9 IVES Conference Series 9 Regulation of terpene production in methyl jasmonate treated cell-cultures

Regulation of terpene production in methyl jasmonate treated cell-cultures

Abstract

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.  MapMan enrichment analysis on their TOP420 co-expressed genes (CEGs) allowed us to delimit some TFs highly enriched in jasmonate-related terms. This was the case of VviMYC2, the only grape member of the bHLH IIIe subgroup, and the best candidate for studying the regulation of jasmonate signaling. We confirmed the binding potential of MYC2 by DAP-seq, and combining it to the list of MeJA-URGs and MYC2-CEGs, we generated a list of high-confidence targets that included jasmonate-related genes and TFs such as MYB24, previously found to interact with MYC2 and required for the activation of terpenoid genes. In concordance, our MeJA data showed 13 significantly induced TPS genes, 9 of which are bound by MYB24, MYC2 or both. A few terpenoid compounds associated with the induced TPSs were significantly accumulated by MeJA. Our data suggests MYC2 regulates the jasmonate pathway and mediates terpene production cooperating with MYB24 in response to MeJA.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jone Echeverria1, Chen Zhang1, Chiara Foresti2 Antonio Santiago1, Luis Orduña1, Paolo Sonego3, Massimo Pindo3, Sara Zenoni2, Marco Moretto3, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Department of Biotechnology, University of Verona, 37134, Verona, Italy
3 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy

Contact the author*

Keywords

gene expression, plant cell suspensions, terpenes, methyl jasmonate, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism.

Impact of pedoclimatical conditions on the precocity potential of vineyards in the canton of Geneva

Terroir studies are common nowadays but few have used precise pedoclimatic measures in order to evaluate the precocity potential. The objectives of this work were (i) to assess the effect of main terroir parameters (soil, climate and topography) influencing the phenological development of the vine, and (ii) to evaluate a geostatistic approach by using a high number of already existing plots (higher variability) to analyze the terroir parameters’ impact.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield.