terclim by ICS banner
IVES 9 IVES Conference Series 9 Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Abstract

Water deficit profoundly impacts the quality of grapes and results in considerable reductions in crop yield. First symptoms manifest with reduced stomatal conductance and transpiration, accompanied by the wilting of apical leaves and tendrils. So far, there is no available data on the water stress response in Croatian grapevine germplasm. Therefore, objective of this study was to determine influence of genotype and treatment on stomatal conductance (gsw), transpiration (E), electron transport rate (ETR), and quantum efficiency in light (PhiPS2). In this research we observed the initial response to water deficit of 84 unique genotypes, 70 Vitis vinifera subsp. vinifera and 14 Vitis vinifera subsp. sylvestris accessions. The experiment was conducted in a greenhouse in both 2022 and 2023, involving self-rooted cuttings exposed to water stress and compared to a well-watered control. Multifactorial analysis of variance was used to examine the effects of genotype, treatment, replicate, date and time of measurement on gsw, E, ETR, PhiPS2. In both years gsw and E were significantly influenced by all parameters except replicate, while ETR wasn’t significantly influenced by treatment in second year and PhiPS2 in first year. Due to the observed significance of the interaction between genotype and treatment across all parameters in both years, we employed the pairwise comparisons of treatment levels within each genotype with Bonferroni correction. In this study, a non-destructive high-throughput method for rapid screening of the initial physiological response to water deficit is briefly presented, in which the grapevine genotypes studied are divided into two distinct groups.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luka Marinov1*, Domagoj Ivan Žeravica2, Katarina Lukšić1, Ana Mucalo1, Maja Ozretić Zoković1, Toni Safner3, Goran Zdunić1

1 Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
2 University of Dubrovnik, Dubrovnik, Croatia
3 University of Zagreb, Faculty of Agriculture, Zagreb, Croatia

Contact the author*

Keywords

water stress, genotype, stomatal conductance, sylvestris, vinifera

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.

Landscapes of Vines and Wines Patrimony – Stakes – Valorisation

The interaction between wine and landscapes is of an unsuspected richness. On the one side, the vineyards form part of the landscapes which they model. On the other side, the wines are related in their perception to the image of a region, a landscape and are at the origin of a cultural richness.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.

The socioclimatic dynamics and the table grape production during a long-drought: the case of Brazilian semiarid

In 2022, the area cultivated with grapes in Brazil counted 75 thousand ha. About 1/2 of the grape production is located in rio grande do sul state, in South Brazil. Nonetheless, the northeast region, especially the Sao Francisco River Valley (SFRV), is increasing its area and production, mainly pushed by table grapes. The states of bahia and pernambuco already respond for circa 1/3 of brazilian grape production.