terclim by ICS banner
IVES 9 IVES Conference Series 9 Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Abstract

Water deficit profoundly impacts the quality of grapes and results in considerable reductions in crop yield. First symptoms manifest with reduced stomatal conductance and transpiration, accompanied by the wilting of apical leaves and tendrils. So far, there is no available data on the water stress response in Croatian grapevine germplasm. Therefore, objective of this study was to determine influence of genotype and treatment on stomatal conductance (gsw), transpiration (E), electron transport rate (ETR), and quantum efficiency in light (PhiPS2). In this research we observed the initial response to water deficit of 84 unique genotypes, 70 Vitis vinifera subsp. vinifera and 14 Vitis vinifera subsp. sylvestris accessions. The experiment was conducted in a greenhouse in both 2022 and 2023, involving self-rooted cuttings exposed to water stress and compared to a well-watered control. Multifactorial analysis of variance was used to examine the effects of genotype, treatment, replicate, date and time of measurement on gsw, E, ETR, PhiPS2. In both years gsw and E were significantly influenced by all parameters except replicate, while ETR wasn’t significantly influenced by treatment in second year and PhiPS2 in first year. Due to the observed significance of the interaction between genotype and treatment across all parameters in both years, we employed the pairwise comparisons of treatment levels within each genotype with Bonferroni correction. In this study, a non-destructive high-throughput method for rapid screening of the initial physiological response to water deficit is briefly presented, in which the grapevine genotypes studied are divided into two distinct groups.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luka Marinov1*, Domagoj Ivan Žeravica2, Katarina Lukšić1, Ana Mucalo1, Maja Ozretić Zoković1, Toni Safner3, Goran Zdunić1

1 Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
2 University of Dubrovnik, Dubrovnik, Croatia
3 University of Zagreb, Faculty of Agriculture, Zagreb, Croatia

Contact the author*

Keywords

water stress, genotype, stomatal conductance, sylvestris, vinifera

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Characterisation of Sicilian Nero d’Avola grape and wine: A preliminary study

The chemical composition and the sensory characteristics of wine result from dynamic interactions between several factors including grape variety, soil, viticultural techniques, climate conditions, yeasts metabolism, oenological approaches. Recently, Grigg et al.

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays.

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).