terclim by ICS banner
IVES 9 IVES Conference Series 9 Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

Abstract

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties. Therefore, the aim of this study was to know the VOCs response to oxidative stress during postharvest ozone treatment in Galician white cultivars Albariño, Godello and Blanco Lexítimo (Vitis vinifera L.) from Ribeira Sacra wine region (Galicia, Spain). Grape samples from 2021 and 2022 vintages were exposed during 24 hours to ozone (30 mg/L) and air (control) at 10 ºC. Grape free and glycosylated volatile compounds were determined by SPE/GC–MS.

The results obtained showed that the ozone treatment effect on grapes volatiles depends of cultivar and vintage studied. In general, ozone caused an increase of total content of terpenes in all cultivars, however a decrease of C6 compounds was also observed. In free fraction an increase of terpenes was observed in all cultivars by ozone application. However, in bound fraction, terpenes, C13-norisoprenoids and esters showed an increase in Godello (2021) and Blanco lexítimo (2022). Free and bound C6 compounds decreased in all cultivars in 2022 vintage.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mar Vilanova1,4*, Bianca S. Costa1, María Fandiño2, Marta Rodríguez-Febereiro2, Rubén Pérez3, Javier Cancela2,4

1 Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)
Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
Adega Ponte da Boga, Castro Caldelas, 32764 Ourense (España)
CropQuality: Crop stresses and their effects on quality, Associate Unit USC-CSIC(ICVV)

Contact the author*

Keywords

Galicia, terpenes, C6 compounds, volatile organic compounds, grapes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.

Rare earth elements in grapes and soil: study of different soil extraction methods

Lanthanides, together with scandium and yttrium, make up the group of Rare Earth Elements (REEs). An official method for analysis of the bioavailable REEs accumulated by plants, depending mainly on soil characteristics, chemical speciation in soil and the specific ability of the plant, is still lacking.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change.

Insights into the stable isotope ratio variability of hybrid grape varieties

The wine industry faces the consumer’s increasing demand for a sustainable and environmentally-friendly production [1]. This demand has been shared and boosted by the European Union within the European Green Deal in the Farm to Fork strategy that aims to reduce a 50% the pesticide utilisation in farming systems. Among the agronomical approaches so far proposed, the use of mould resitant hybrid varieties -based on crossings of Vitis vinifera with other Vitis spp [2]- with a high tolerance to the attack of vine patogens is gaining the vinegrowers attention and the production area is continuously increasing