terclim by ICS banner
IVES 9 IVES Conference Series 9 Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

Abstract

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties. Therefore, the aim of this study was to know the VOCs response to oxidative stress during postharvest ozone treatment in Galician white cultivars Albariño, Godello and Blanco Lexítimo (Vitis vinifera L.) from Ribeira Sacra wine region (Galicia, Spain). Grape samples from 2021 and 2022 vintages were exposed during 24 hours to ozone (30 mg/L) and air (control) at 10 ºC. Grape free and glycosylated volatile compounds were determined by SPE/GC–MS.

The results obtained showed that the ozone treatment effect on grapes volatiles depends of cultivar and vintage studied. In general, ozone caused an increase of total content of terpenes in all cultivars, however a decrease of C6 compounds was also observed. In free fraction an increase of terpenes was observed in all cultivars by ozone application. However, in bound fraction, terpenes, C13-norisoprenoids and esters showed an increase in Godello (2021) and Blanco lexítimo (2022). Free and bound C6 compounds decreased in all cultivars in 2022 vintage.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mar Vilanova1,4*, Bianca S. Costa1, María Fandiño2, Marta Rodríguez-Febereiro2, Rubén Pérez3, Javier Cancela2,4

1 Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)
Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
Adega Ponte da Boga, Castro Caldelas, 32764 Ourense (España)
CropQuality: Crop stresses and their effects on quality, Associate Unit USC-CSIC(ICVV)

Contact the author*

Keywords

Galicia, terpenes, C6 compounds, volatile organic compounds, grapes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management

Canopy photosynthetic activity and water relations of Syrah/R99 as affected by row orientation on a particular terroir

L’activité photosynthétique et les relations hydriques de plantes de Syrah sur R99 un mois après la véraison ont été étudiées dans un vignoble de la région de Stellenbosch. Le vignoble, planté à 2,75 entre rangs et 1,5 m sur le rang, sur un sol de type Glenrosa, était en pente et exposé a l’ouest: pour les rangs on avait adopté une orientation nord

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.