terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Abstract

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs. However, the mechanisms underlying these responses grapevine rootstocks are still unclear. Our study aimed to decipher the physiological and molecular mechanisms to prevent iron deficiency chlorosis under high lime conditions of different tolerant rootstocks. Our results confirmed different responses related to rootstock genotype (Fercal, 3309C) in root biomass, ferric chelate reductase activity and organic acid contents depending on direct (-Fe) or indirect (+Fe+BiC) Fe deficiency. Currently expression studies are performed to conclude on Fe uptake, transport and relocation, including their regulation signals e.g. transcription factors and phytohormones. Findings of this study will contribute to our knowledge on rootstock traits and optimize our strategy for vine nutrition.  

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sarhan Khalil1, Arianna Lodovici2, Rebeka Strah3, Astrid Forneck1, Laura Zanin2, Nicola Tomasi2, Maruša Pompe Novak3, Michaela Griesser*1

1 University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Austria
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Italy
3 National Institute of Biology, Department of Biotechnology and Systems Biology, Slovenia

Contact the author*

Keywords

Fe deficiency, Chlorosis, Bicarbonate, Ferric chelate reductase, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Cartes thématiques: applications au vignoble champenois

Quel est l’intérêt des cartes en viticulture? Celles-ci répondent à plusieurs usages.
Formalisation au sein d’un référentiel codifié et normalisé de la connaissance relative au milieu, aux observations biologiques et aux pratiques culturales.

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al.

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.