terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Abstract

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs. However, the mechanisms underlying these responses grapevine rootstocks are still unclear. Our study aimed to decipher the physiological and molecular mechanisms to prevent iron deficiency chlorosis under high lime conditions of different tolerant rootstocks. Our results confirmed different responses related to rootstock genotype (Fercal, 3309C) in root biomass, ferric chelate reductase activity and organic acid contents depending on direct (-Fe) or indirect (+Fe+BiC) Fe deficiency. Currently expression studies are performed to conclude on Fe uptake, transport and relocation, including their regulation signals e.g. transcription factors and phytohormones. Findings of this study will contribute to our knowledge on rootstock traits and optimize our strategy for vine nutrition.  

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sarhan Khalil1, Arianna Lodovici2, Rebeka Strah3, Astrid Forneck1, Laura Zanin2, Nicola Tomasi2, Maruša Pompe Novak3, Michaela Griesser*1

1 University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Austria
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Italy
3 National Institute of Biology, Department of Biotechnology and Systems Biology, Slovenia

Contact the author*

Keywords

Fe deficiency, Chlorosis, Bicarbonate, Ferric chelate reductase, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Climate change impacts on grapevine leafroll disease and its transmission by mealybugs

Climate change impacts crop plants, plant pathogens, and their insect vectors and hence adds abiotic stress to the triangle of plant-virus-vector interactions.

Twenty-two shades of grey – An analysis of alcohol regulations in the Arab world

This article compares alcohol regulations across 22 Arab League member countries.

The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

Aims: Agroscope investigated the efficiency of nitrogen fertilization via foliar urea application at veraison with the aim of raising the YAN (yeast assimilable nitrogen) content in the musts. The observations were conducted on the white grapevine cultivar Doral (Chasselas x Chardonnay) in several pedoclimatic conditions of the Leman wine region, Switzerland, in the years 2012 and 2013. Knowing that the YAN in must plays a key role in wine quality, the aim was finding the main parameters affecting the final YAN level in order to better control them.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

The developement of vineyard zonation and demarcation in South Africa

L’histoire de viticulture de l’Afrique du Sud embrasse 340 ans, et a commencé, à la province du Cap, où les colonisateurs hollandais ont planté les premières vignes. L’arrivée des Huguenots français en 1688 a avancé, le développement.