terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Abstract

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs. However, the mechanisms underlying these responses grapevine rootstocks are still unclear. Our study aimed to decipher the physiological and molecular mechanisms to prevent iron deficiency chlorosis under high lime conditions of different tolerant rootstocks. Our results confirmed different responses related to rootstock genotype (Fercal, 3309C) in root biomass, ferric chelate reductase activity and organic acid contents depending on direct (-Fe) or indirect (+Fe+BiC) Fe deficiency. Currently expression studies are performed to conclude on Fe uptake, transport and relocation, including their regulation signals e.g. transcription factors and phytohormones. Findings of this study will contribute to our knowledge on rootstock traits and optimize our strategy for vine nutrition.  

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sarhan Khalil1, Arianna Lodovici2, Rebeka Strah3, Astrid Forneck1, Laura Zanin2, Nicola Tomasi2, Maruša Pompe Novak3, Michaela Griesser*1

1 University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Austria
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Italy
3 National Institute of Biology, Department of Biotechnology and Systems Biology, Slovenia

Contact the author*

Keywords

Fe deficiency, Chlorosis, Bicarbonate, Ferric chelate reductase, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of the pre-fermentative addition of enological adjuvants on the development of UTA in wines

During alcoholic fermentation and wine aging, indole-3-acetic acid (IAA) can degrade into 2-aminoacetophenone (AAP). The presence of reasonable amount of AAP in wines is regarded as the main cause of untypical ageing

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine.

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

New use of natural silk fiber as a fining agent in wines

Undesirable compounds in wine, like OTA, biogenic amines, and pesticide residues, can negatively affect its quality and pose health risks to consumers. In addition, an excess of tannins can lead to an unpleasant rise in astringency and bitterness, which makes tannins another target of reduction.