terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Abstract

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs. However, the mechanisms underlying these responses grapevine rootstocks are still unclear. Our study aimed to decipher the physiological and molecular mechanisms to prevent iron deficiency chlorosis under high lime conditions of different tolerant rootstocks. Our results confirmed different responses related to rootstock genotype (Fercal, 3309C) in root biomass, ferric chelate reductase activity and organic acid contents depending on direct (-Fe) or indirect (+Fe+BiC) Fe deficiency. Currently expression studies are performed to conclude on Fe uptake, transport and relocation, including their regulation signals e.g. transcription factors and phytohormones. Findings of this study will contribute to our knowledge on rootstock traits and optimize our strategy for vine nutrition.  

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sarhan Khalil1, Arianna Lodovici2, Rebeka Strah3, Astrid Forneck1, Laura Zanin2, Nicola Tomasi2, Maruša Pompe Novak3, Michaela Griesser*1

1 University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Austria
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Italy
3 National Institute of Biology, Department of Biotechnology and Systems Biology, Slovenia

Contact the author*

Keywords

Fe deficiency, Chlorosis, Bicarbonate, Ferric chelate reductase, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

Development of a LC-FTMS method to quantify natural sweeteners in red wines

The quality of a wine is largely related to the balance between its sourness, bitterness and sweetness. Recently, molecules coming from grapes have been showed to notably contribute to sweet taste of dry wines. To study the viticultural and oenological parameters likely to affect their concentration, their quantification appears of high interest and subsequently requires powerful analytical techniques. Therefore, a new method using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed and validated to quantify epi-DPA-3′-O-β-glucopyranoside acid (epi-DPA-G) and astilbin, sweet molecules identified in wine. Three gradients were tested on five different C18 columns (Hypersil Gold, HSS T3, BEH, Syncronis and Kinetex).

Setting up new tools to reduce the duration of the grapevine breeding process : Mercier experience

Since some years, the French wine sector faces strategical challenges, all linked to climate change. Multiple issues have been observed like diseases development, early frost, drought, change in the precocity and maturity of grapes, each one resulting in loss of productivity and yield. In France, the varieties proposed today by nurseries are historical varieties that are not well adapted to those changes. Therefore, Mercier Frères, one of the leading grapevine nursery, has decided to start its own research programs, with the help of its laboratory Novatech, to answer the growing demand for new grapevine varieties.