terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Abstract

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs. However, the mechanisms underlying these responses grapevine rootstocks are still unclear. Our study aimed to decipher the physiological and molecular mechanisms to prevent iron deficiency chlorosis under high lime conditions of different tolerant rootstocks. Our results confirmed different responses related to rootstock genotype (Fercal, 3309C) in root biomass, ferric chelate reductase activity and organic acid contents depending on direct (-Fe) or indirect (+Fe+BiC) Fe deficiency. Currently expression studies are performed to conclude on Fe uptake, transport and relocation, including their regulation signals e.g. transcription factors and phytohormones. Findings of this study will contribute to our knowledge on rootstock traits and optimize our strategy for vine nutrition.  

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sarhan Khalil1, Arianna Lodovici2, Rebeka Strah3, Astrid Forneck1, Laura Zanin2, Nicola Tomasi2, Maruša Pompe Novak3, Michaela Griesser*1

1 University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Austria
2 University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Italy
3 National Institute of Biology, Department of Biotechnology and Systems Biology, Slovenia

Contact the author*

Keywords

Fe deficiency, Chlorosis, Bicarbonate, Ferric chelate reductase, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Classification of the wine-growing environment of Central Mancha (Spain). First works

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria.

Promoting sustainability in Mediterranean agriculture: insights from the Portuguese vine & wine sector

Agroecology is an integrated approach that simultaneously applies ecological and social concepts and principles to redesign and manage food and agricultural systems, promoting agroecosystems with the necessary biological, socio-economic, and institutional diversity and alignment to support greater efficiency. Thus, several studies have been carried out at promoting the adoption of more agroecological practices among farmers and a wider audience concerning soil conservation and health maintenance.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest.

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.