terclim by ICS banner
IVES 9 IVES Conference Series 9 REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

Abstract

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.

REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

REDWine’s microalgae were tested in 2022 and 2023 with 4 purposes in vineyard: improve flowering stages, contribute to high temperature resistance, biofungicide against downy mildew and increasing in nitrogen content in ripening to help fermentation and improve aromatic compounds.

So far, results were interesting on wine making process but need more trials and results to assess vineyard activity.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Miguel Cachão1*, Ana Chambel1, Sérgio Pinto1

1AVIPE, R. D. João de Castro, 12 loja, 2950-206 Palmela, Portugal

Contact the author*

Keywords

CO2 sequestration, microalgae, vineyards, biotic and abiotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al.

Sensory patterns observed towards the oxidation of white, rosé and sparkling wines: An exploratory study

Oxygen management is crucial in terms of wine quality. Even more for white and rosé wines, which are less protected against oxidation than reds due to the lower levels of antioxidant polyphenols. This need is due to the existence of equilibria between chemical forms depending on the redox potential.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

Aroma accumulation trends during berry development and selection of grape aroma candidate genes suitable for functional characterization

Grape flavour management in the vineyard requires knowledge of the derivation of individual flavour and aroma characteristics and the effects that different concentrations and interactions between these compounds have on flavour potential.