terclim by ICS banner
IVES 9 IVES Conference Series 9 REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

Abstract

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.

REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

REDWine’s microalgae were tested in 2022 and 2023 with 4 purposes in vineyard: improve flowering stages, contribute to high temperature resistance, biofungicide against downy mildew and increasing in nitrogen content in ripening to help fermentation and improve aromatic compounds.

So far, results were interesting on wine making process but need more trials and results to assess vineyard activity.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Miguel Cachão1*, Ana Chambel1, Sérgio Pinto1

1AVIPE, R. D. João de Castro, 12 loja, 2950-206 Palmela, Portugal

Contact the author*

Keywords

CO2 sequestration, microalgae, vineyards, biotic and abiotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (5)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

NMR approach for monitoring the photo-degradation of riboflavin and methionine

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

What strategies do wine firms adopt to integrate CSR into their activities? An analysis among Italian wineries

Corporate Social Responsibility (CSR), as defined by the European Commission, is a strategic framework through which companies integrate social, environmental, and economic sustainability into their operations (European Commission, 2001).

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration