terclim by ICS banner
IVES 9 IVES Conference Series 9 Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Abstract

In the face of climate change, new grapevine varieties will have to show an adaptive  phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine. We will characterize structural variants potentially related to differential expression or alternative spicing of candidate genes for stress tolerance in individual grape berries. Markers derived from structural variants mapped on the pangenome, as well as new sets of SNP markers, will allow the identification of genomic regions associated to leaf water and carbon balance under several water stress regimes, its  plasticity, adaptation traits like phenology, genomic vulnerability, and to some traits related to the aromatic potential of grape berries. They represent new tools for grape breeding. More detailed functional analysis of leaf and berry phenotypic plasticity in response to water deficit will be then conducted, on a subset of contrasted varieties. We will present the project strategy and highlight a few preliminary results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dominique This 1, Roberto Bacilieri1, Eva Coindre1,4, Olivia di Valentin2, Baptiste Pierre1, Flora Tavernier1, Thomas Baerenzung dit Baron 3, Gautier Sarah1, Vincent Segura 1, Agnès Doligez1, Charles Romieu1, Thierry Lacombe1, Sylvain Santoni1, Christine Tollon-Cordet1, Audrey Weber1, Aude Coupel-Ledru 4, Thierry Simonneau4, Benoit Pallas4, Gaelle Rolland4, Stéphane Berthezène4, Romain Boulord4, Julien Pirrello2, Farid Regad2, Olivier Geffroy 3, Olivier Rodrigues3, Aurélie Roland5, Somaya Sachot5, Nicolas Saurin6, Emmanuelle Garcia-Adrados6, Cécile Marchal7, Sandrine Dedet7, Anne Mocoeur7, Alban Jacques3, Patrice This1*

1 AGAP Institute, Univ Montpellier – CIRAD – INRAE, Institut Agro, F-34398 Montpellier, France
2 LRSV,  Université de Toulouse – INP – Purpan, 31076 Toulouse, France
3 PPGV, Université de Toulouse -, INP – Purpan, 31076 Toulouse, France
4 LEPSE, Univ Montpellier – INRAE – Institut Agro, Montpellier, France
5 SPO, INRAE – Institut Agro -University Montpellier, 34060 Montpellier, France
6 Domaine de Pech Rouge, Univ Montpellier – INRAE, F-11430 Gruissan, France
7 Domaine de Vassal, INRAe, route de Sète, 34340 Marseillan, France

Contact the author*

Keywords

Vitis vinifera, plasticity, pangenome, water/carbon balance, aroma

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Chemometric profiling of Pinot noir wine from south tyrol as a tool to reach wine style goals

AIM: Pinot Noir (PN) wines produced in South Tyrol were profiled with the aim to provide guidelines for the oenologist to reach specific winemaking goals in terms of typicity and quality.

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado