terclim by ICS banner
IVES 9 IVES Conference Series 9 Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Abstract

In the face of climate change, new grapevine varieties will have to show an adaptive  phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine. We will characterize structural variants potentially related to differential expression or alternative spicing of candidate genes for stress tolerance in individual grape berries. Markers derived from structural variants mapped on the pangenome, as well as new sets of SNP markers, will allow the identification of genomic regions associated to leaf water and carbon balance under several water stress regimes, its  plasticity, adaptation traits like phenology, genomic vulnerability, and to some traits related to the aromatic potential of grape berries. They represent new tools for grape breeding. More detailed functional analysis of leaf and berry phenotypic plasticity in response to water deficit will be then conducted, on a subset of contrasted varieties. We will present the project strategy and highlight a few preliminary results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dominique This 1, Roberto Bacilieri1, Eva Coindre1,4, Olivia di Valentin2, Baptiste Pierre1, Flora Tavernier1, Thomas Baerenzung dit Baron 3, Gautier Sarah1, Vincent Segura 1, Agnès Doligez1, Charles Romieu1, Thierry Lacombe1, Sylvain Santoni1, Christine Tollon-Cordet1, Audrey Weber1, Aude Coupel-Ledru 4, Thierry Simonneau4, Benoit Pallas4, Gaelle Rolland4, Stéphane Berthezène4, Romain Boulord4, Julien Pirrello2, Farid Regad2, Olivier Geffroy 3, Olivier Rodrigues3, Aurélie Roland5, Somaya Sachot5, Nicolas Saurin6, Emmanuelle Garcia-Adrados6, Cécile Marchal7, Sandrine Dedet7, Anne Mocoeur7, Alban Jacques3, Patrice This1*

1 AGAP Institute, Univ Montpellier – CIRAD – INRAE, Institut Agro, F-34398 Montpellier, France
2 LRSV,  Université de Toulouse – INP – Purpan, 31076 Toulouse, France
3 PPGV, Université de Toulouse -, INP – Purpan, 31076 Toulouse, France
4 LEPSE, Univ Montpellier – INRAE – Institut Agro, Montpellier, France
5 SPO, INRAE – Institut Agro -University Montpellier, 34060 Montpellier, France
6 Domaine de Pech Rouge, Univ Montpellier – INRAE, F-11430 Gruissan, France
7 Domaine de Vassal, INRAe, route de Sète, 34340 Marseillan, France

Contact the author*

Keywords

Vitis vinifera, plasticity, pangenome, water/carbon balance, aroma

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]

Le réseau français des partenaires de la sélection vigne : un dispositif unique au monde au service de la sauvegarde du patrimoine variétal

The French vine selection partners network is currently made up of 40 regional partners, grouped around IFV (French Institute for Vine and Wine) and INRAE (national research institute for agriculture and environment), whose missions are preservation, selection, and innovation of our varietal diversity. The originality of this device is based on a 3-level organisation: – varietal diversity preservation, with the world reference: the INRAE’s vine genetics resources centre of Vassal-Montpellier (Marseillan, France), the world’s largest ampelographic collection, which includes nearly 6 000 accessions of cultivated Vitis vinifera from 54 countries, as well as rootstocks, interspecific hybrids, wild vines (lambrusques) and wild American and Asian species.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).