terclim by ICS banner
IVES 9 IVES Conference Series 9 Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Abstract

In the face of climate change, new grapevine varieties will have to show an adaptive  phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine. We will characterize structural variants potentially related to differential expression or alternative spicing of candidate genes for stress tolerance in individual grape berries. Markers derived from structural variants mapped on the pangenome, as well as new sets of SNP markers, will allow the identification of genomic regions associated to leaf water and carbon balance under several water stress regimes, its  plasticity, adaptation traits like phenology, genomic vulnerability, and to some traits related to the aromatic potential of grape berries. They represent new tools for grape breeding. More detailed functional analysis of leaf and berry phenotypic plasticity in response to water deficit will be then conducted, on a subset of contrasted varieties. We will present the project strategy and highlight a few preliminary results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dominique This 1, Roberto Bacilieri1, Eva Coindre1,4, Olivia di Valentin2, Baptiste Pierre1, Flora Tavernier1, Thomas Baerenzung dit Baron 3, Gautier Sarah1, Vincent Segura 1, Agnès Doligez1, Charles Romieu1, Thierry Lacombe1, Sylvain Santoni1, Christine Tollon-Cordet1, Audrey Weber1, Aude Coupel-Ledru 4, Thierry Simonneau4, Benoit Pallas4, Gaelle Rolland4, Stéphane Berthezène4, Romain Boulord4, Julien Pirrello2, Farid Regad2, Olivier Geffroy 3, Olivier Rodrigues3, Aurélie Roland5, Somaya Sachot5, Nicolas Saurin6, Emmanuelle Garcia-Adrados6, Cécile Marchal7, Sandrine Dedet7, Anne Mocoeur7, Alban Jacques3, Patrice This1*

1 AGAP Institute, Univ Montpellier – CIRAD – INRAE, Institut Agro, F-34398 Montpellier, France
2 LRSV,  Université de Toulouse – INP – Purpan, 31076 Toulouse, France
3 PPGV, Université de Toulouse -, INP – Purpan, 31076 Toulouse, France
4 LEPSE, Univ Montpellier – INRAE – Institut Agro, Montpellier, France
5 SPO, INRAE – Institut Agro -University Montpellier, 34060 Montpellier, France
6 Domaine de Pech Rouge, Univ Montpellier – INRAE, F-11430 Gruissan, France
7 Domaine de Vassal, INRAe, route de Sète, 34340 Marseillan, France

Contact the author*

Keywords

Vitis vinifera, plasticity, pangenome, water/carbon balance, aroma

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The application of soil biological indicators to support soil conservation practices and landscape quality in viticulture

Le but de notre travail a été d’étudier l’influence de différents systèmes de la gestion du sol en viticulture sur des paramètres biologiques de sol comme indicateurs de la protection et de la qualité du sol. La conservation de sol est indispensable pour une viticulture durable et la protection du terroir. Nos résultats ont montré, que la matière

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5)

Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Red wines can sometimes exhibit undesirable green, herbaceous, and vegetative aromas, negatively impacting their sensory profile and consumer acceptance.