terclim by ICS banner
IVES 9 IVES Conference Series 9 Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Abstract

In the face of climate change, new grapevine varieties will have to show an adaptive  phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine. We will characterize structural variants potentially related to differential expression or alternative spicing of candidate genes for stress tolerance in individual grape berries. Markers derived from structural variants mapped on the pangenome, as well as new sets of SNP markers, will allow the identification of genomic regions associated to leaf water and carbon balance under several water stress regimes, its  plasticity, adaptation traits like phenology, genomic vulnerability, and to some traits related to the aromatic potential of grape berries. They represent new tools for grape breeding. More detailed functional analysis of leaf and berry phenotypic plasticity in response to water deficit will be then conducted, on a subset of contrasted varieties. We will present the project strategy and highlight a few preliminary results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dominique This 1, Roberto Bacilieri1, Eva Coindre1,4, Olivia di Valentin2, Baptiste Pierre1, Flora Tavernier1, Thomas Baerenzung dit Baron 3, Gautier Sarah1, Vincent Segura 1, Agnès Doligez1, Charles Romieu1, Thierry Lacombe1, Sylvain Santoni1, Christine Tollon-Cordet1, Audrey Weber1, Aude Coupel-Ledru 4, Thierry Simonneau4, Benoit Pallas4, Gaelle Rolland4, Stéphane Berthezène4, Romain Boulord4, Julien Pirrello2, Farid Regad2, Olivier Geffroy 3, Olivier Rodrigues3, Aurélie Roland5, Somaya Sachot5, Nicolas Saurin6, Emmanuelle Garcia-Adrados6, Cécile Marchal7, Sandrine Dedet7, Anne Mocoeur7, Alban Jacques3, Patrice This1*

1 AGAP Institute, Univ Montpellier – CIRAD – INRAE, Institut Agro, F-34398 Montpellier, France
2 LRSV,  Université de Toulouse – INP – Purpan, 31076 Toulouse, France
3 PPGV, Université de Toulouse -, INP – Purpan, 31076 Toulouse, France
4 LEPSE, Univ Montpellier – INRAE – Institut Agro, Montpellier, France
5 SPO, INRAE – Institut Agro -University Montpellier, 34060 Montpellier, France
6 Domaine de Pech Rouge, Univ Montpellier – INRAE, F-11430 Gruissan, France
7 Domaine de Vassal, INRAe, route de Sète, 34340 Marseillan, France

Contact the author*

Keywords

Vitis vinifera, plasticity, pangenome, water/carbon balance, aroma

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

SmartGrape: early detection of cicada-borne vine diseases using field spectroscopy and detection of volatile plant scents

Bois noir (BN) is a cicada-transmitted grapevine disease that today causes up to 50% yield and vine loss in vineyards. It is caused by the phytoplasma Candidatus Phytoplasma solani (16SrXII-A).

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Management of varietal thiols in white and rosé wines using biotechnical tools

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines.

Complantations : enjeux et facteurs de réussite

Dans le cadre de TerclimPro 2025, Coralie Dewasme a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8486