terclim by ICS banner
IVES 9 IVES Conference Series 9 Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Abstract

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled. A chromosome-scale diploid genome assembly consisting of ~ 986 Mb and a contig N50 length of 25.8 Mb was obtained. A total of 58,912 protein-coding genes were predicted on the two sets of phased chromosomes. A whole genome comparison with the genome of the susceptible reference accession PN40024 was performed. Mgaloblishvili resistance loci were in-depth analyzed in terms of structure, gene content, gene expression and impact of structural variants (SVs) and SNPs (Single Nucleotide Polymorphisms). Furthermore, using DNA sequencing data of Mgaloblishvili self-cross progeny, resistance haplotypes were identified for Rpv30 and Rpv31. The obtained data highlighted Mgaloblishvili resistant phenotype as a consequence of multiple small SVs and SNPs, that eventually results into differential transcriptional regulation. Altogether, these genetic resources will increase the knowledge about downy mildew-grapevine pathosystem. Moreover, they will be available for breeding programs aiming to develop grapevine resistant varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Valentina Ricciardi 1, Andrea Minio 2, Melanie Massonnet 2, Alexander H.J. Wittenberg3, David Maghradze 4,5,6, Silvia Laura Toffolatti 1, Osvaldo Failla 1, Dario Cantù 2*, Gabriella De Lorenzis

1 Department of Agricultural and Environmental Sciences, University of Milan
2 Department of Viticulture and Enology, University of California, Davis (CA), USA
3 KeyGene, Wageningen, The Netherlands
4 Caucasus International University, Tbilisi, Georgia
5 Georgian Technical University, Tbilisi, Georgia
6National Wine Agency of Georgia, Tbilisi, Georgia

Contact the author*

Keywords

Grapevine, biotic stress, QTL, genome, Caucasus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Reconfiguring wine prescription : from traditional critics to digital social networks

The integration of digital social networks (DSN) has profoundly transformed communication practices within the wine industry, reorganizing the dynamics of prescription and marketing.

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].

Caractérisation des relations hydriques sol/vigne dans un terroir languedocien

Par le fait d’une politique agricole communautaire axée sur des objectifs de qualité des produits, la recherche et l’identification des critères de cette qualité deviennent impératives. En viticulture, la notion de qualité du produit est rattachée au concept théorique de «terroir». Ce terme englobe un ensemble de paramètres du milieu (géologie, sol, climat) influant sur la récolte.

Grape variety identification and detection of terroir effects from satellite images

Satellite images are used to determine the reflectance dependency to wavelength in different grape varieties (Cabernet-Sauvignon, Merlot, Pinot Noir, and Chardonnay). The terroir influence is investigated through study of vineyards in France, Brazil and Chile.

Typology of wines in touch with environmental factors of terroirs and grapevine. Application to the Chinon vineyard

According to the vintage, it may be difficult for vine growers to make a decision regarding the type of wine in relation with the soils.