terclim by ICS banner
IVES 9 IVES Conference Series 9 Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Abstract

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled. A chromosome-scale diploid genome assembly consisting of ~ 986 Mb and a contig N50 length of 25.8 Mb was obtained. A total of 58,912 protein-coding genes were predicted on the two sets of phased chromosomes. A whole genome comparison with the genome of the susceptible reference accession PN40024 was performed. Mgaloblishvili resistance loci were in-depth analyzed in terms of structure, gene content, gene expression and impact of structural variants (SVs) and SNPs (Single Nucleotide Polymorphisms). Furthermore, using DNA sequencing data of Mgaloblishvili self-cross progeny, resistance haplotypes were identified for Rpv30 and Rpv31. The obtained data highlighted Mgaloblishvili resistant phenotype as a consequence of multiple small SVs and SNPs, that eventually results into differential transcriptional regulation. Altogether, these genetic resources will increase the knowledge about downy mildew-grapevine pathosystem. Moreover, they will be available for breeding programs aiming to develop grapevine resistant varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Valentina Ricciardi 1, Andrea Minio 2, Melanie Massonnet 2, Alexander H.J. Wittenberg3, David Maghradze 4,5,6, Silvia Laura Toffolatti 1, Osvaldo Failla 1, Dario Cantù 2*, Gabriella De Lorenzis

1 Department of Agricultural and Environmental Sciences, University of Milan
2 Department of Viticulture and Enology, University of California, Davis (CA), USA
3 KeyGene, Wageningen, The Netherlands
4 Caucasus International University, Tbilisi, Georgia
5 Georgian Technical University, Tbilisi, Georgia
6National Wine Agency of Georgia, Tbilisi, Georgia

Contact the author*

Keywords

Grapevine, biotic stress, QTL, genome, Caucasus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.

Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Yield estimation is very important for the wine industry since provides useful information for vineyard and winery management. The early yield estimation of the grapevine provides information to winegrowers in making management decisions to achieve a better quantity and quality of grapes. In general, yield forecasts are based on destructive sampling of bunches and manual counting of berries per bunch and bunches per vine.

Les préparations biodynamiques 500 et 501 ont elles un effet sur la vigne ?

Dans le cadre de TerclimPro 2025, Markus Rienth a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8396

Effects of auxin treatment on compositional and molecular ripening dynamics in grape varieties of northern Italy

Context and purpose of the study. The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.