terclim by ICS banner
IVES 9 IVES Conference Series 9 Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Abstract

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled. A chromosome-scale diploid genome assembly consisting of ~ 986 Mb and a contig N50 length of 25.8 Mb was obtained. A total of 58,912 protein-coding genes were predicted on the two sets of phased chromosomes. A whole genome comparison with the genome of the susceptible reference accession PN40024 was performed. Mgaloblishvili resistance loci were in-depth analyzed in terms of structure, gene content, gene expression and impact of structural variants (SVs) and SNPs (Single Nucleotide Polymorphisms). Furthermore, using DNA sequencing data of Mgaloblishvili self-cross progeny, resistance haplotypes were identified for Rpv30 and Rpv31. The obtained data highlighted Mgaloblishvili resistant phenotype as a consequence of multiple small SVs and SNPs, that eventually results into differential transcriptional regulation. Altogether, these genetic resources will increase the knowledge about downy mildew-grapevine pathosystem. Moreover, they will be available for breeding programs aiming to develop grapevine resistant varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Valentina Ricciardi 1, Andrea Minio 2, Melanie Massonnet 2, Alexander H.J. Wittenberg3, David Maghradze 4,5,6, Silvia Laura Toffolatti 1, Osvaldo Failla 1, Dario Cantù 2*, Gabriella De Lorenzis

1 Department of Agricultural and Environmental Sciences, University of Milan
2 Department of Viticulture and Enology, University of California, Davis (CA), USA
3 KeyGene, Wageningen, The Netherlands
4 Caucasus International University, Tbilisi, Georgia
5 Georgian Technical University, Tbilisi, Georgia
6National Wine Agency of Georgia, Tbilisi, Georgia

Contact the author*

Keywords

Grapevine, biotic stress, QTL, genome, Caucasus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Callinikos: the new white table grapeseedless variety for biological produce

This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.

Apports des mesures de résistivité électrique du sol dans les études sur le fonctionnement de la vigne et dans la spatialisation parcellaire

La mesure de la résistivité électrique des sols est une technique non destructive, spatialement intégrante, utilisée depuis peu en viticulture. L’utilisation d’appareils de mesures performant et de logiciels adaptés permet de traiter les données afin de pouvoir visualiser en deux ou trois dimensions les variations de textures ou d’humidité d’un sol.

Soil carbon changes and greenhouse gas emissions in vineyards – Is the 4 per 1000 goal realistic?

In this video recording of the IVES science meeting 2023, Hans Reiner Schultz (Hochschule Geisenheim University, Germany) speaks about soil carbon changes and greenhouse gas emissions in vineyards – is the 4 per 1000 goal realistic?. This presentation is based on an original article accessible for free on OENO One.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: grape and must composition

This work discusses the effects of soil and weather conditions on the grape composition of cv. Tempranillo in four different locations of Spain, during the 2008-2011 seasons.