terclim by ICS banner
IVES 9 IVES Conference Series 9 Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Abstract

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled. A chromosome-scale diploid genome assembly consisting of ~ 986 Mb and a contig N50 length of 25.8 Mb was obtained. A total of 58,912 protein-coding genes were predicted on the two sets of phased chromosomes. A whole genome comparison with the genome of the susceptible reference accession PN40024 was performed. Mgaloblishvili resistance loci were in-depth analyzed in terms of structure, gene content, gene expression and impact of structural variants (SVs) and SNPs (Single Nucleotide Polymorphisms). Furthermore, using DNA sequencing data of Mgaloblishvili self-cross progeny, resistance haplotypes were identified for Rpv30 and Rpv31. The obtained data highlighted Mgaloblishvili resistant phenotype as a consequence of multiple small SVs and SNPs, that eventually results into differential transcriptional regulation. Altogether, these genetic resources will increase the knowledge about downy mildew-grapevine pathosystem. Moreover, they will be available for breeding programs aiming to develop grapevine resistant varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Valentina Ricciardi 1, Andrea Minio 2, Melanie Massonnet 2, Alexander H.J. Wittenberg3, David Maghradze 4,5,6, Silvia Laura Toffolatti 1, Osvaldo Failla 1, Dario Cantù 2*, Gabriella De Lorenzis

1 Department of Agricultural and Environmental Sciences, University of Milan
2 Department of Viticulture and Enology, University of California, Davis (CA), USA
3 KeyGene, Wageningen, The Netherlands
4 Caucasus International University, Tbilisi, Georgia
5 Georgian Technical University, Tbilisi, Georgia
6National Wine Agency of Georgia, Tbilisi, Georgia

Contact the author*

Keywords

Grapevine, biotic stress, QTL, genome, Caucasus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

Evaluation of clonal variability of phenolic compounds in Vitis vinifera L. cv. Trnjak crni grown in Croatia

Context and purpose of the study. Croatia has rich grapevine genetic resources with more than 130 native varieties preserved.

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect