terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring diversity of grapevine responses to Flavescence dorée infection

Exploring diversity of grapevine responses to Flavescence dorée infection

Abstract

Flavescence dorée, a serious threat to grapevine cultivation in several European Countries, is caused by phytoplasmas in the 16Sr-V ribosomal group, classified as quarantine organisms in the EU and transmitted mainly by the insect vector Scaphoideus titanus. The disease is controlled only by indirect and preventive measures, with important economic and environmental concerns. Genetic resources from the great variety of Vitis vinifera germplasm together with application of new genomic techniques could be applied to produce resistant/tolerant plants, once the genetic bases of susceptibility are elucidated. In a current Italian project (BIORES*) we are evaluating different international and local grapevine cvs. as well as microvine plants for their response to FD transmission and multiplication in controlled conditions. Infective vectors were caged onto potted plants of 8 varieties for 5 weeks. Insect survival and infectivity were monitored and plant infections were quantitatively tested 11 weeks post inoculation.
In parallel, previous data and materials generated by the Project Consortium are being mined to select putative resistance- or susceptibility-related genes, to be further validated in functional analyses, either on already produced transgenic plants or in future genome editing experiments to introduce precise targeted mutations in candidate genes of the highly susceptible cv. Chardonnay, with the final goal of reducing FD susceptibility without compromising other productive traits.

*Funded by the European Union – NextGenerationEU.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Francesca Cavagna1, Enea Guerrieri1, Davide Danzi1, Sabrina Palmano2, Cristina Marzachì2, Nicola Mori1, Annalisa Polverari1*

1 Department of Biotechnology, University of Verona, via della Pieve 70, San Pietro in Cariano, Verona, Italy
2 Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy

Contact the author*

Keywords

Phytoplasma, Germplasm, Breeding, Genome editing, Sustainable viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.