terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring diversity of grapevine responses to Flavescence dorée infection

Exploring diversity of grapevine responses to Flavescence dorée infection

Abstract

Flavescence dorée, a serious threat to grapevine cultivation in several European Countries, is caused by phytoplasmas in the 16Sr-V ribosomal group, classified as quarantine organisms in the EU and transmitted mainly by the insect vector Scaphoideus titanus. The disease is controlled only by indirect and preventive measures, with important economic and environmental concerns. Genetic resources from the great variety of Vitis vinifera germplasm together with application of new genomic techniques could be applied to produce resistant/tolerant plants, once the genetic bases of susceptibility are elucidated. In a current Italian project (BIORES*) we are evaluating different international and local grapevine cvs. as well as microvine plants for their response to FD transmission and multiplication in controlled conditions. Infective vectors were caged onto potted plants of 8 varieties for 5 weeks. Insect survival and infectivity were monitored and plant infections were quantitatively tested 11 weeks post inoculation.
In parallel, previous data and materials generated by the Project Consortium are being mined to select putative resistance- or susceptibility-related genes, to be further validated in functional analyses, either on already produced transgenic plants or in future genome editing experiments to introduce precise targeted mutations in candidate genes of the highly susceptible cv. Chardonnay, with the final goal of reducing FD susceptibility without compromising other productive traits.

*Funded by the European Union – NextGenerationEU.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Francesca Cavagna1, Enea Guerrieri1, Davide Danzi1, Sabrina Palmano2, Cristina Marzachì2, Nicola Mori1, Annalisa Polverari1*

1 Department of Biotechnology, University of Verona, via della Pieve 70, San Pietro in Cariano, Verona, Italy
2 Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy

Contact the author*

Keywords

Phytoplasma, Germplasm, Breeding, Genome editing, Sustainable viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Data deluge: Opportunities, challenges, and lessons of big data in a multidisciplinary project

Grapevine powdery mildew resistance is a key target for grape breeders and grape growers worldwide. The driver of the USDA-NIFA-SCRI VitisGen3 project is completing the pipeline from germplasm identification to QTL to candidate gene characterization to new cultivars to vineyards to consumers. This is a common thread across such projects internationally. We will discuss how our objectives and approaches leverage big data to advance this initiative, starting with genomics and computer vision phenotyping for gene discovery and genetic improvement. To manage and maintain resistances for long-term sustainability, growers will be trained through our nation-wide extension and outreach plan.